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Basic Definitions
A graph is a mathematical representation of network. We will explore some basic
combinatorial properties of graphs, such as paths and cycles. Here, you can
also find the definitions of some commonly used graphs like trees and complete
graphs.

1

Graph theory is a branch of mathematics that naturally arises when you study
a group of objects and a relationship that exists between pairs of objects. For
example, you might be studying a group at a party, and the friendships that
exist between pairs of attendees. Even this simple setting presents itself with
some interesting questions, like how tight-knit this group is, or which folks at the
party are the least related. Since this type of structure shows up so frequently
in mathematics, we will set up an abstract mathematical object called a graph
which contains the mathematical data to describe these types of relationships.

1 Definition

Graph

A graph G is a collection of vertices V (G) and a set of edges

E(G) ⊂V ×V.

The edge is required to be unordered in the sense that whenever (v, w) ∈ E(G),
the pair (w, v) 6∈ E(G).

In the case where the graph G is clear, we will suppress the label and simply denote
the vertices by V and edges by E . While this definition gives us the mathematical
rigor necessary to begin our explanation of graphs, it is useful to have some good
examples in mind to ground our discussion.

2 Example

Friends in the

Order

Let us look at the motiviating discussion of friend
groups at a party, and see how this fits into the
definition of a graph. Each person in the popu-
lation would represent a vertex, and the edges
between vertices correspond to the pairs of at-
tendees who are friends.

Albus

Sirus

James

Severus

A good way to understand a graph is to draw a diagram of it, by placing a dot for
each of the vertices, and drawing a line segment or curve between two vertices if
that pair is inside of the edge set E . The edges of these diagrams are allowed to
cross each other, and the edges need not be drawn straight.

Even after introducing a couple of graphs, we can already see some interesting
topological properties. For instance, the complete graph on 5 vertices can only
be drawn with edges that cross, whereas every graph that represents a platonic

3



Some Common Graphs
It is good to have some examples of graphs in mind before we go around discussing the

theory of graphs.

3

1

2

3

4

Graph:One way to construct a graph is to build it by
hand. For example, we can give a graph four vertices
and 4 edges by specifying

V = {1,2,3,4} E = {12,23,13,14}.

While mathematically precise, this presentation is not
very intuitive, and so when we want to specify a graph
in this text, we will usually just draw a picture of that
graph, and assume that it has some explicit (although
unwritten) labeling of the vertices and edges.
Complete Graph:One especially important family of
graphs are the complete graphs, which are saturated
with edges. Let n ∈N be a natural number. The com-
plete graph on n vertices, denoted as Kn , is the graph
with n vertices and an edge between every pair of
vertices. Since every edge corresponds to a choice of
2 vertices, and in the complete graph we’ve chosen
every pair, it follows that

|EKn | =
(

n

2

)
.

One reason we call this graph complete is because
every graph on fewer than n vertices is a subgraph of
Kn .
Octahedron:Graphs naturally arise from other
branches of mathematics. For example, every
polyhedra in R3 determines a graph by its edges
and vertices. In the diagram on the left, we see the
graph corresponding to the octahedron. Later, we
will classify the platonic solids by understanding the
combinatorics of their corresponding graphs. Notice
that a polyhedron has more data than just its under-
lying graph, as it also knows what combinations of
edges and vertices make up faces of the polyhedron.



solid can be given by a planar drawing without edges crossing. Before we get
to describing topological properties of graph, let’s first describe some of the
combinatorial data attached to a graph.

In this text, the vertices of a graph will be labelled with lowercase letters u, v, w, x, y.
For edge, we will either use the letters e, f ; or we will refer to an edge with end-
points u and v by the pair uv . With this notation, we say that uv is an edge if
either (u, v) ∈ E or (v,u) ∈ E . The simplest piece of data that we can ask about a
vertex in a graph is the number of neighbors it has.

4 Definition

Neighborhood

Fix some vertex v . Then the subset of vertices
which are connected to v by an edge is called the
neighborhood of v , and will be denoted

N (v) := {u ∈V | (u, v) or (v,u) ∈ E }

The number of edges connected to v is called the
degree of v and is denoted

deg(v) := |{u ∈ N (v)}|.

v

deg(v) = 2

We can already capture a lot of data about a graph simply by knowing the degrees
of the vertices in it. For example, if |V (G)| = n, and every vertex has degree |n −1|,
then it must be the case that G = Kn . If instead every vertex has degree 2, then it
must be the case that G is a collection of cycles. Both of these give us example
of regular graphs, which are graphs whose vertices all have the same degree. A
natural family of regular graphs that show up are the Platonic solids.

The degree of a vertex provides local information about the graph. This means
that knowing the degree of a particular vertex v ∈ G doesn’t tell us a lot about
the graph as a whole — we only learn about a small portion of the graph around
v . This is contrasted with quantities like |E(G)| and |V (G)|, which tell us global
information about our graph. In many ways, topology is the study of how local
information can be meaningfully assembled into global data.

5 Claim

Average vertex

degree

Let d(G) be the average degree of the vertices of a graph. The total number of
edges in G is:

2|E | = d(G)|V |.

Here, we are using averaging to take local information – the degree – and obtaining
some information about the entire graph. The rough idea of proof is that every
edge contributes +1 to the degree of each of its ends, so that the sum of all the
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degrees of the vertices will be twice the number of edges. We therefore obtain the
equality

2|E | = ∑
v∈V

deg(V ) = d(G)|V |.

But let’s try to make this argument a little more mathematically watertight.

Proof: From the definition of average degree

d(G)|V | = ∑
v∈V

deg(v) = ∑
v∈V

∑
u∈V

δE (u, v)+δ(v,u)

where δE (u, v) = 1 if (u, v) ∈ E , and 0 otherwise. The reason both orders are
necessary is because our definition of edge used ordered pairs (u, v).

= ∑
(u,v)∈V ×V

δE (u, v)+δE (v,u)

As δ(u, v) only takes a value of 1 on sets (u, v) that are in E , this term counts the
number of edges

=2|E |

A good example keep in mind for this lemma are the complete graphs. These
n-vertices of these graphs each have (n−1) neighbors, so by Claim 5 the number
of edges in a complete graph is n(n−1)

2 . We also get this strange, but surprisingly
useful, corollary.

6Corollary

An Even number

of odd vertices

The number of odd degree vertices in any graph is even.

The proof is left to Exercise P 1 . One general mathematical principle is that a
large, complicated object (like a graph) can be understood by asking questions
about its substructures. For instance, by asking how many edges or how many
vertices are in a graph, we can begin to get an understanding of its global structure.
In the setting of graphs a particularly useful substructure to study are subsets
of the edges and vertices which themselves make subgraphs of G . Here are two
especially important types of subgraphs which we will look at throughout the
course.

7Definition

Paths and Cycles

Let G be a graph. A path in G is a sequence of distinct vertices {vi }n
i=0 such that

vi vi+1 is an edge in G for every i . The length of the path is the number of edges
in it. We say that a path starts at v0 and ends at vk . A cycle in G is a path P such
that the first and last vertex of P share a common edge (which is not already in
the path P )
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Paths and cycles are useful subgraphs to study as they can probe global data
about the graph. If you know that a graph has a path between any two points, or
that a graph contains no cycles, then you’ve learned something interesting about
the global topological information of that graph.

8 Example

Paths and Cycles

In the drawn example, we have a path 4 high-
lighted in red, and a cycle of length 3 highlighted
in blue. The longest path that one can draw
would have length 5, and the largest cycle has
length 6.

Since every edge constitutes a very short path, it will necessarily be the case that
a non-trivial graph has some paths in it. However, it need not be the case that a
graph have any cycles.

9 ExampleA tree is a graph with a unique path between any
2 points. This is a global property of a graph. If
we fix a vertex v in the tree (called a root), then
the set of paths that start at v are in bijection

with the vertices in the tree. In Exercise P 3 , sev-
eral different interesting properties of a graph are
shown to be equivalent to being a tree.

v

The length of the longest path in a graph G is telling us something about the global
structure of the graph– you need to look at the entire graph to find the longest
path. As before, we look at how we can assemble local information – in this case,
the degrees of the vertices – to provide some information on this invariant.

10 ClaimLet δ be the minimal degree of the vertices in G . Then G has a path of length δ.

Proof: Start with any path P . Let {vi } be the vertices of the path. Let’s look at initial
vertex of the path , v0. Suppose that we can find a vertex w ∈ N (v), which is not
already contained within the path P . Take this vertex w , and append it onto P to
build a new path wP which is one vertex longer.

We can continue this process unless we’ve grown our initial path to a path P ′

which can no longer be extended. This will happen if every point in the neigh-
borhood of the end of the path is contained within the path. For this path P ′, we
have N (v0) ⊂V (P ′). Since δ≤ |N (v0)| < |V (P )|, we conclude that δ≤ |E(P )|.
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Connectivity
A graph is connected if you can travel between any two vertices along the edges
of the graph. We also look at several different quantitative measurements of
connectivity.

2

Topology is the study of mathematical structures which have a notion of how
their parts are connected to eachother. A graph is an example of a topological
structure, as each vertex “knows” which neighbors it is connected to. By travelling
from vertex to vertex along edges, we can explore questions about the global
connectivity of a graph.

κ(G) = 2

11Definition

Vertex

Connectedness

A graph G is called connected if for any two ver-
tices v and w , there exists a path from v to w . A
disconnecting set U ⊂V is a set of vertices with
the property that the graph G \U is disconnected.
The connectivity of G , denoted κ(G), is the size of
the smallest disconnecting set of G .

The connectivity of a graph is an important measurement for applications. For
example, if we are building a power grid for a utility, then whether or not the
power can be delivered to the entire network from a single node is determined
by the connectedness of the underlying graph. The connectivity of the network
is a slightly stronger measure, which tells us the maximal number of nodes of
the network can fail and still have the network remain connected. We have a
property of a graph which interpolates between the connectivity number and the
connected property. We say that a graph is k-connected if no vertex set of size k
disconnects the graph G . Equivalently, a graph is k-connected if its connectivity
is at least k.

Eastern Australia
Western Australia

New Guinea
Indonesia

Siam
India

China
12Example

Bottlenecks and

Connectivity

If H ⊂G is a subgraph, one can measure the size
of the smallest set it takes to disconnect H from
the remainder of G . This will always be at least
the connectivity of the entire graph. In the game
of Risk, the continent of Australia is especially
prized because of it’s low vertex connectivity to
the remainder of the graph.

Connectivity has a strange relationship with topology. Whether or not a graph is
connected is a topological property of the graph. However, the connectivity of a
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graph is not a topological property. An example that demostrates that connectivity
is not a topological property are the graphs of the triangle and the square, which
are topologically indistinguishable. However, the triangle is three connected,
and the square is only 2 connected! We will later see in Station 3 exactly why
connectivity is not a topological property. You can observe that even making
small modifications to the graph (like making the edge of a graph into a path,)
can greatly change to the connectivity of a graph.

It is possible to get an estimate on the connectedness of an average component
of the graph by knowing the average degree of the vertices of a graph. In short, if
you have a lot of edges, then we expect the graph have a connected component
with high connectivity (see Example 14 .)

There is no particular reason why we choose to use deletion of vertices to define
the connectivity of a graph. We could have instead used edges to get a measure of
connectivity, and define the edge connectivity as the minimal number of edges
that you must remove to disconnect the graph. Somewhat surprisingly, the vertex
connectivity and the edge connectivity are usually not related to each other.

14 Example

Dumbbell Graph

Consider the dumbbell graph which is created by
taking two Kn and mutually connecting them to
a new vertex v . In order to disconnect this graph
by removing edges, you need to remove at least n
edges. However, to vertex disconnect the graph,
it suffices to take out the middle vertex v .

Kn Kn

v

The discrepancy between the edge and vertex connectivity is due to the fact that
a concentrating edges onto a single vertex gives it low vertex connectivity, but has
little impact on edge connectivity.

Spectral Graph

Theory

A more quantitative measure of connectivity examines the average distance
squared between two vertices in the graph. We now give a nice algebraic
characterization of this metric. Let V = {v1, . . . , vn} be the vertices of a graph G .
The adjacency matrix of G is the n ×n matrix A whose i j entry is 1 if vi v j is an
edge, and 0 otherwise. Define the degree matrix D to be the diagonal matrix
whose i th diagonal entry is deg(vi ). Finally, we define the Laplacian of the graph
G to be the matrix

L = D − A.

The eigenvalues of L bound the connectivity of G , and in applications gives a
more nuanced definition for connectivity.

As demonstrated by the dumbell graph (Example 14 ), the vertex connectivity
tells us where the bottlenecks are in our graph. Another way of counting the
bottlenecks in a graph would be to ask how many independent paths there are
betweeen two vertices, as the presence of a bottleneck in the graph will force this
number to be small.
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Mader's Theorem
Every graph with average vertex degree d(g ) greater than 4k contains a k-connected sub-

graph.

14

The idea of this proof is to induct on the number of vertices, where the vertex we remove
during the inductive step is one of low degree. We start by massaging d(G) ≥ 4k to obtain
the inequalities

|V | ≥ 2k −1 |E | ≥ (2k −3)(|V |−k +1)+1

For the first inequality, notice that if the average degree is 4k, there must be a vertex with
degree at least 4k; therefore it has 4k neighbors. Therefore the number of vertices is at
least 4k. For the second inequality, we apply Claim 5 ,

|E | = d(G)|V | ≥ 4k|V | ≥ (2k −3)(|V |−k +1)+1

With these two new inequalities, we run an inductive argument on the number of vertices
in the graph. In the base case, G is a graph on 2k −1 vertices and therefore is complete,
for which the claim follows trivially.

For the inductive step, we split into two cases based on whether there exists a vertex
of low-degree. If v has low degree, then G \ v will have larger average degree, and by
induction we can still run our argument.

Case 1: Suppose that there exists a vertex of degree less than 2k −3. Then even after
removing this vertex, our inductive hypothesis holds as we’ve decreased the number of
vertices by 1 but only removed at most (2k −3) edges.

G1 G2

Case 2: Suppose that the inequality is not sharp, and
we cannot find a vertex of degree 2k −3 or less. Let’s
assume for contradiction that G is not k-connected.
Then there are two subgraphs G1,G2 ⊂ G such that
G1 ∩G2 has fewer than k vertices. Every vertex in
G1 \G2 has neighbors only in G1. Since the minimal
degree of each vertex is 2k −2, we have that G1 has at
least 2k −1 vertices. Similarly, G2 has 2k −1 vertices.
So, both the graphs Gi satisfy the first inequality for
our induction hypothesis.

As E = E1 ∪E2, we get |E | ≤ |E1| + |E2|. We additionally know that |V1| + |V2| ≤ |V | +k.
Combining these inequalities gives

(2k −3)(|V1|−k +1)+1)+ (2k −3)(|V2|)−k +1) ≤ (2k −3)(|V |−k +1)+1 ≤ |E | ≤ |E1|+|E2|

from which we conclude that one of the Gi satisfy the induction hypothesis, and therefore

contains a k-connected subgraph.



15 Definition

Average vertex

degree

A graph is k-path connected if any two vertices v and w can be joined by at least
k disjoint paths.

You can check that the dumbell graph (Example 14 ) is only 1-path connected, as
there is only one way to get from the left portion of the graph to the right portion.
Menger’s theorem (Theorem 17 ) tells us that this is generally the case: the path
connectivity of a graph is equal to its vertex connectivity.

Menger’s theorem seems a bit strange on first reading because of a contrast
in the definition of path connectedness and vertex connectedness. The path
connectivity looks to maximize a set of independent paths, while the vertex
connectivity is tries to minimize the size of a disconnecting set.

Max-Min

These types of statements are common in combinatorics related to optimization.
Max-Min properties extend to many combinatorial objects beyond graphs,
and the Max-Min principle has several statements which are all relevant to opti-
mization of networks. Some equivalent theorems to Menger’s theorem include
the Max-flow Min-cut theorem, König’s theorem, Dilworth’s theorem, and Hall’s
theorem.

One application of Menger’s theorem is to classify the structure of graphs with
connectivity 2.

16 Lemma

Adding paths

preserves

κ(G) ≥ 2

Suppose that κ(G) ≥ 2. Let v, w be two vertices in G . Create a new graph, G∪v,w P
by attaching a path of length at to G , whose endpoints are v and w . Then κ(G∪v,w

P ) ≥ 2.
If additionally we require that the path have at least 3 vertices, then κ(G ∪v,w P ) =
2.

Proof: Suppose for contradiction that κ(G ∪v,w P ) = 1. Then there is a disconnect-
ing vertex u so that G ∪v,w P \ {u} is disconnected. It must be the case that u ∈ P ,
as otherwise G \ {u} would be disconnected, contradicting that the 2-connectivity
of G . If P has only two vertices, {v, w} we are done (as every candidate vertex
for u needs to lie outside of G , but V (G ∪w,v P ) = G(P ). Therefore the length
of P must be at least 2. The removal of u from P separates the path into two 2
components. Each of those components is connected to G by their ends, and
therefore G ∪w,v P \ {u} is still connected. u fails to be a disconnecting vertex for
G ∪w,v P , contradicting our assumption.

It remains to show that if the length of P is at least 2, that there exists a discon-
necting set for G ∪w,v P of size 2. Observe that G ∪w,v P \ {w, v} is disconnected if
there are any vertices in P besides w or v .

11



17 Menger's Theorem

The path connectivity of a graph is equal to the vertex connectivity of the graph.

We first show that the path connectedness is at most the vertex connectedness. Suppose
that v1, . . . , vk form a disconnecting set which separates G into two components G1 and
G2. Pick a vertex u1 ∈G1, and u2 ∈G2. There can be at most k disjoint paths between u1

and u2, as each path must use one of the k points in the intersection. This shows that the
path connectivity is less than the vertex connectivity.

A B

b1b2

bn

...

P1

Pn

Setup:To show that the path connectedness is at least
the vertex-connectedness, we will prove a stronger
statement. Suppose that G is k-connected, and let A
and B be disjoint subgraphs of G . We will show that
whenever we have a collection of fewer than k disjoint
paths from A to B , we can find a larger connection of
disjoint paths from A to B . Let’s set up some notation
for this.

A B

b1b2

bn

Q

y
x

Claim (Inductive statement for Menger's Thm.). Suppose
that A and B are subgraphs of G each containing at
least k vertices. Let b1, . . . ,bn be vertices of B , with
n < k. Let Pn = {P1, . . . ,Pn} be a collection of disjoint
paths G , which

– only intersect A at their left endpoints,

– only intersect B at their right endpoints, which
are the specified vertices bi .

Then there exists a point y ∈ B and collection Pn+1

of n +1 disjoint paths in G \ (A∪B)) which satisfy the
above conditions, with right endpoints b1, . . . ,bn , y .

We will prove this by inducting on the size of G \ B . When B is all of G \ A, then each path
Pi consists of a single edge, and k-connectedness gaurentees that A cannot be separated
from B by fewer than the removal of k-vertices. For our inductive step, let us assume
that the claim holds for every subgraph B ′ containing B . Let’s look at our current graph
and subgraph B . Now, we will randomly construct a new path Q from A with a random
endpoint in B . If this path is disjoint from the Pn , then we are done. Now, we use the
inductive hypothesis by expanding the subgraph B to include a point from the path Q.
Let x be the final point where the path Q intersects the collection Pn , and without loss of
generality we will assume that x lies on the path Pn .



A B ′

b1b2

bny
z

x

Qb

Qy

Denote by Qy the segment of Q going from x to y , and
Qb the segment of Q going from x to bn . Now enlarge
B by including the path Qb and Qy ,

B ′ := B ∪Qb ∪Qy .

The end points b1, . . . ,bn−1, x satisfy the conditions
of the claim. By our inductive hypothesis, there ex-
ist disjoint paths P ′

n+1 going from A to end points
b1, . . . ,bn−1, x, z in B ′.

At this point we’ve found a subgraph B ′ containing B , and we would like to reduce down
to B . We break into different cases based on the location of the point z.

Case 1: In the easy case, z belongs to our original
set B . In this case, replace y by z in the original
step. The paths P ′

1, . . .P ′
n−1 and P ′

n+1 with endpoints
b1, . . . ,bn−1, z are disjoint. To create a final path with
endpoint on bn , we take the concatenation of the
path P ′

n with endpoint x, and the path Qb . Since
Qb ⊂ B ′, it is disjoint from all of the P ′

i we’ve con-
structed so far. This gives us the collection Pn+1

A B

b1b2

bny
z

x

Qb

The
more difficult case is when z only belongs to the enlargement B ′. Then z ∈ B ′\B =QbtQy .
By construction, the paths Qb and Qy are disjoint, so either z ∈Qb or z ∈Qy .

Case 2a Suppose that z ∈Qy . Then consider the paths

– P ′′
n , which is P ′

n concatenated with Qb , and

– P ′′
n+1, which is P ′

n+1 concatenated with the por-
tion of Qy lying after z.

These two paths are disjoint from the P ′
1, . . . ,P ′

n−1,
and are additionally disjoint for eachother. These
paths are seen to have interior vertices which are dis-
joint from B , and by construction have left endpoints
in A. The {P ′

1, . . . ,P ′
n−1,P ′′

n ,P ′′
n+1} satisfy the condi-

tions of the claim.

A B

b1b2

bnyz
x

Qb

Qy

Case 2b Alternatively, it may be the case that z lies on
the path Qb . T

– P ′′
n , which is P ′

n+1 concatenated with Qb , and

– P ′′
n+1, which is P ′

n concatenated with the por-
tion of Qy lying after z.

As in the previous case, the paths
{P ′

1, . . . ,P ′
n−1,P ′′

n ,P ′′
n+1} satisfy the conditions of

the claim.

A B

b1b2

bny

z

x

Qb

Qy



This gives us a method to build larger 2-connected graphs from smaller 2-connected
graphs. This can be strenghthend to a characterization of 2-connected graphs.

18Theorem

Characterization

of 2-connected

graphs

Let G be a 2-connected graph. Then either

– There is a 2-connected graph H so that G may be obtained by attaching a
path of H and

G = H ∪v,w P.

– G is a cycle.

Proof: Suppose that G is not a cycle. Since G is 2-connected, G contains at least a
cycle. This means that G contains a 2-connected subgraph, and so we can find a
maximal 2-connected proper subgraph H . Here, maximal means that there does
not exist another proper 2-connected subgraph H ′ containing H . We would like
to show that G is obtained by attaching a path onto the graph H .

Look at a vertex v ∈ G \ H , and a vertex w ∈ H . As G is 2-connected, Menger’s
theorem ensures that there exists disjoint paths P1,P2 from v to w . This gives two
paths from w to that are contained in H . H ∪P is a 2-connected subgraph of G . It
cannot be the case that H ∪P is a proper subgraph, because H was assumed to
be the maximal proper 2-connected subgraph of G . It must then be the case that
G = H ∪P , concluding the proof.

This gives us way to build up all 2-connected graphs.

19Corollary Every 2-connected graph is generated from a cycle with the subsequent addition
of paths.

We will have to develop a few more tools before we’re able to get a classification
result for 3 connected graphs, and will return to this in Station 5 .
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Minors and Topological Minors
Subdivision and contraction are two dual operations which modify a graph at an
edge. We’ll look at how these opertaions preserve and modify the topological and
combinatorial properties of a graph.

3

The main goal of topology is to understand what kinds of topological spaces
are out there, and classify them. This means not only understanding how to
construct topological spaces, but also when two different spaces are equivalent.
So far, we’ve been using graphs as the building blocks for topological spaces.

20 ExampleWhen we draw a graph, we do not care how we
draw the edges of the graph – the edges are al-
lowed to be bent, or straight or cross. Only the
adjacency relations between those edges and ver-
tices matter to us. For example, both the pen-
tagon and the star drawn represent the same
graph, just drawn differently in the plane. They
also represent the same topological space: both
are a combinatorial representation of the circle,
S1.

Before we understand when two graphs represent the same topological space, we
should understand when two different graphs are equivalent.

21 Definition

Graph

Isomorphism

We say that two graphs G and H are graph isomorphic if there exists a bijection
φ : V (G) → V (H) so that whenever v w is an edge of E(G), then φ(v)φ(w) is an
edge of E(H).

Isomorphism is an equivalence relation on graphs. Figuring out if two graphs
are graph isomorphic isn’t an easy task – proving that there does not exist a map
between two graphs can be very tricky. Usually, we prove the non-existence of
an isomorphism between two graphs by assigning invariants or properties to our
graphs which only depend on the isomorphism class of a graph. This allows us to
distinguish non-isomorphic graphs.

A simple invariant would be to count the number of edges in a graph. clearly two
graphs cannot be graph isomorphic if they have a different number of edges or
vertices. However, there are plenty of graphs which have the same number of
edges and vertices and are not isomorphic. For example, all trees on n-vertices
have n −1 edges, and all appear the same when only looking at the number of
edges and number of vertices.
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The properties of the graph that we have studied so far (connectivity of a graph,
maximal vertex degree) all can be used to distinguish graphs, and when we de-
velop new properties and invariants throughout this course, I encourage you to
construct pairs graphs which can be distinguished by the invariant, and pairs
of graph which are non-isomorphic but are not distinguished by the property
being discussed.

Graph

Homomorphisms

One could weaken the notion of isomorphism to homomor-
phism, which drops the requirement of Definition 21 that the map of vertices
be in bijection. A typical example of a graph homomorphism comes from sub-
graphs, where one can express the subgraph inclusion H ⊂ G via an injective
graph homomorphism from H to G . Asking whether or not there exists a graph
homomorphism between two graphs is not only interesting as a relation between
graphs, but can be used to construct invariants between graphs. For example,
the graph homomorphisms from G → Kn can be used to understand the vertex
colorings of the graph G .

0.3.1 Subdivision and Topological Minors

Graph isomorphism does not describe the whole entire story of topological equiv-
alence. To a topologist, there is no difference between a path and an edge– they
both describe “things that look like lines.” In the same light, all cycles, no matter
their size, topologically describe the circle. While all graph equivalences give us
topological equivalences, the notion of topological equivalence is weaker and
a bit more nuanced. One approach to understanding topological equivalence
of graphs is to develop some operations which modify a graph, but keep the
topology the same.

e

G G ÷e

w− w+

ve

22Definition

Subdivision

Let G be a graph, and let e be an edge in G , with
endpoints w− and w+. The subdivision of G at e
is the graph G ÷e, whose vertex set has an addi-
tional vertex

V (G ÷e) =V (G)∪ {ve }

and whose edge set connects this new vertex con-
necting to the ends of e:

E(G ÷e) =V (G) \ {e}∪ {ve w−, ve w+}.

If H is obtained from G by a sequence of subdivisions, we say that H is a subdivi-
sion of G . If a subdivision of G is contained in H , we say that G is a topological
minor of H . The set of all graphs that contain G as a topological minor is denoted
TG .

While the definition of subdivision may look intimidating, it is a visually intuitive
process. One starts with a graph, selects an edge, and then adds a new vertex into
the middle of that edge.

16



Every cycle is a subdivision of the basic cycle on 3 vertices. Subdividing any edge
of a cycle produces the next larger cycle, so one may say that whenever m < n,
Cm is a topological minor of Cn . The set of graphs whose topology matches that
of the circle can be described using subdivisions as TC3.

23 Example

K5 Subdivision

Graphs contain many more graphs as topological
minors than subgraphs. Notice that every sub-
graph is a topological minor, but it is usually not
the case that a topological minor is a subgraph.
The graph drawn on the right is a subdivision of
K5, obtained by taking every edge and subdivid-
ing it. Since this graph is a subdivision of K5, it
contains every graph on five vertices as a topo-
logical minor. However, it does not even contain
a triangle as a subgraph. In fact, every cycle in
this graph has even length, which is a pretty un-
common property for a graph to have.

From a combinatorial perspective, subdivision is a bit confusing. It doesn’t pre-
serve many graph invariants: for example, whenever one subdivides a graph, the
vertex connectivity of the graph is reduced down to at most two. While things like
the maximal degree of a vertex are preserved, almost every other combinatorial
properties (like edge or vertex connectivity, coloring) is thrown out of the win-
dow. Furthermore, subdivision only serves to make a graph more complicated by
adding in additional vertices and edge.

However, subdivision satisfies all the condition that we value as topologists: when
you subdivide an edge, you are allowed to stretch paths out, but not allowed
to break them or create new ones. We will therefore say that the topological
properties of a graph are those which are preserved under subdivision. If H is a
subdivision of G , we will write G ⇒ H .

This doesn’t form an equivalence relation on graphs, as the relation is rarely
reflexive: if G ⇒ H then H ⇒G , it must be the case that G = H . However, there is
a general trick for construcing equivalence relations out of operations which do
not satisfy the reflexive axiom.

17



H

G2G1

24Claim

Homeomorphic

Graphs G1 and G2 are homeomorphic or topolog-
ically equivalent if there exists a common subdi-
vision H so that

G1 ⇒ H and G2 ⇒ H .

We then write G1 ' G2. Homeomorphism is an
equivalence relation.

As a general rule, subdivision preserves the topological properties of a graph, but
loses a lot of the combinatorial data. In particular, the operation of subdivision
takes a graph G , and produces a slightly sparser, more complicated graph G ÷e.
This means that the operation of subdivision is not particularly useful for proof
techniques. In short: subdivision is good for topologists, but bad for graph theory.

0.3.2 Contraction and Minors

A slightly more aggressive type of graph deformation is contraction along and
edge, which one can use to invert the operation of subdivision.

25Definition

Contraction

Let G be a graph, and let e an edge in G with ends
w+ and w−. Then define the contraction G/e to
be the graph with a new vertex ve

V (G/e) =V (G) \ {v−, v+}∪ {ve }

whose edges are given by neighbors of e,

E(G/e) = E(G)∪ {ve v | e ∈ N (w−)∪N (w+)}.

A graph G is a minor of H is G is a subgraph of
a contraction of H . When G is a minor of H , we
write G ¹ H .

The graph G/e is in some sense “simpler” than the graph G in that G/e has fewer
edges and vertices than G . Contraction is an opposite operation to subdivision,
in that every subdivision can be undone by a contraction. However it is not the
case that every contraction can be undone by a subdivision. For instance, the
contraction given in the above example is not a contraction which can be undone
by subdivision. One also sees this relation between subdivision and contraction
when comparing the topological minors of a graph to their minors.
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26 Example

Peterson Graph

While every topological minor is a minor, it is
not the case that every minor is a topological mi-
nor. A famous example of a graph which contains
many minors, but not very many topological mi-
nors, is the Peterson graph. The Peterson graph
can be contracted to K5. As a result, the peterson
graph contains every graph on 5 or fewer vertices
as a topological minor. However, it does not con-
tain K5 as a topological minor. Compare this to
?? , which contains K5 as a topological minor.

Subdivision preserves the paths and cycles which exist in a graph, while contract-
ing an edge can possibly destroy the paths and cycles which contain that edge.
For this reason, we do not usually think of contraction as an operation which
plays well with the topological aspects of graph theory. Consider, for instance,
that every connected graph can eventually be contracted down to a point! This
means that contraction doesn’t give meaningful equivalence relations between
graphs.

This does not mean that contraction is less useful for studying graphs. In fact,
many of the combinatorial properties of graphs that we care about are not related
to the topological type of the graph. Furthermore, because contraction simplifies
a graph by lowering the number of edges and vertices, it becomes a valuable tool
for inspecting the combinatorial properties of a graph.

Planarity

Contraction will become
a more powerful tool for studying the combinatorial properties of a graph. There
are even a few topological properties of a graph which are well behaved under
contraction. For instance, whether or not a graph can be drawn in the plane
without edges crossing (Station 1 ) is a property which is preserved under the
operation of contraction. Additionally, the number of ways that we can color a
graph so that no two adjacent vertices have the same color is well behaved under
the operation of contraction. We will return to this at Station 2 .

Deletion-

Contraction

While subdivision seems to make a graph sparser (and less connected), con-
traction makes a graph denser. At Example 27 we will see how this relation can
be used to compute the reliability of a graph, which is another measure of con-
nectivity. This is an example of graph properties which can be calculated via a
recursion relation called deletion-contraction. Examples of properties that can be
computed by deletion contraction include the Pott-Ising model which describes
spins on a lattice, or the number of spanning forests in a graph. The Tutte Polyno-
mial of a graph is an invariant of the graph which universally captures all such
properties.
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Application: Reliability Polynomial
The reliability of G is a function RG (p), which calculates the probability that G remains

connected if we remove each edge of G with probability (1−p).

27

For instance, a tree does not make a very reliable network– for a tree to fail, all we need is
for one of its edges to give out. This means that the reliability of the tree is p |E |.
Naïvely, one computes the reliability polynomial by looking at every subgraph of the G ,
checking if it is connected, and taking the average connectivity of these states. We can
use contraction to obtain a nice recurrence relation which computes the reliability.

Proposition (Recursive computation of RG ). Let G be a graph. Then the reliability polynomial
can be computed by the relation:

pRG/e (p)+ (1−p)RG\e .

Proof: Take any edge e in G . When we start removing edges of G , we start with this edge,
and either this edge fails with probability p, or it remains reliable and is not deleted.

e

Case 1: The edge e fails, which occurs with probability
p. Even though we remove e there is still the possi-
bility that the graph is connected. The probability
that the graph remains connected after the possible
removal of more edges is given by the reliability of the
remaining graph. So, all of the cases where the edge
e is deleted contributes contributes p ·RG\e (p) to the
reliability polynomial.

ve

Case 2: With probability (1−p), the edge will not fail.
This means that the two vertices at the edge of the
graph are gaurenteed to remain connected. One way
to represent this configuration is to take the graph G
and contract it along the edge e. The contribution
from states containing the edge e is (1−p) ·RG/e (p) .

These two cases are disjoint, and exhaust all the possibilities for how edges of G may fail
or remain. Therefore the probability that G is connected after removing each edge with
probability (1−p) is

p ·RG/e (p)+ (1−p) ·RG\e .

As a corollar, we learn something about the structure of RG (p) by applying induction on
the number of edges in G .

Corollary.The Reliability of a graph is a polynomial in the variable p.



The Cycle Space
By representing the vertex set and edge set of a graph with vector spaces, we can re-
cast some of the graph properties we previously explored (like path-connectivity)
in the language of linear algebra. We show that the dimension of the cycle space
is a topological invariant of a graph.

4

In this section we introduce a way of encoding data that we’ll use in the future.
The idea is to take some of the combinatorial data of the graph and upgrade it to
algebraic data. Here is a question that frames the tools we’ll be developing in this
section.

28 Example

How to count

cycles

What is the proper way to count the number
of cycles in a graph G? One way to get a count
of cycles is to list them all out: for instance, this
graph has 3 cycles. However, it looks like the large
cycle can be drawn by combining two smaller
interior cycles. We would like to say that this
graph has 2 essential cycles, and that the third
comes about from the fact that when 2 cycles
share an edge, you get a third cycle for free.

The problem in counting cycles is that we do not have a good notion of what
it means to “add” together cycles in a graph. We do not even know how to add
together edges. One way we could make sense of taking sums of edges would be
to work instead with a vector space E , whose basis is given by the set of edges.
In order to this to have any meaning, we’d have to imbue this vector space with
some information so that it remembers what the graph G was. This means that
we are going to have to abstract our definition of a graph a little bit.

29 Claim

Graphs a

1-complexes

The data of a directed graph equivalent to a set of vertices V , a set of edges E ,
and two maps, called the left and right boundary maps:

∂l : E →V ,∂r : E →V.

When we work with sets, there is not a way to encode both the left and right
endpoint maps into the same map. However, if we upgrade the set E into a vector
space, we can encode both of these boundary maps into one function instead.
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Sets and Vector Spaces

There are some portions of this course where we’ll foray into the world of algebra,
and try to build up algebraic tools which capture the geometric of what we are
trying to construct. The majority of these tools are summarized in the appendix.
In general, these discussions are rather abstract, but are useful to see in parallel
with the topologically inspired problems we are solving.

Let’s start with a discussion on the limitation of working with sets and function
between sets. Suppose we are given two functions f1 : S1 → T and f2 : S2 → T .
Then in the language of sets, we can assemble these two maps into one map.

f1 t f2 : S1 tS2 →T

f (x) =
{

f1(x) if x ∈ S1

f2(x) if x ∈ S2

It may help to think of the data of the disjoint union and the relevant maps
between sets as fitting nicely into the diagram drawn below.

S1 tS2 S1

S2 T

f1t f2 f1

f2

One might say that the disjoint union construct allows us to take maps between
sets “combine” them whenever they have the same target. However, if we instead
have maps f1 : S → T1 and f2 : S → T2, there is not a good way to formulate a map
from S to T1 tT2. The obstacle to the creation of such a map is that it should be
multi-valued, but we don’t have multi-valued maps between sets.

In order to be able to add together the codomains of maps, we’ll need to upgrade
our sets to more interesting algebraic objects.

30Definition

Linearizeation of

Sets

Let S = {s1, . . . , sk } be a set. Denote by S the vector space over F2 =Z/2Z, with
basis labeled by S.

Let f : S1 → S2 be a map between sets. When we write f : S1 → S2, we’ll mean
the linear map induced from the basis f , which is called the linearization of f .

We’ll continue to build a dictionary between sets and linear algebra throughout
this course. A way to translate from vector spaces back to combinatorics ofsets is
to use the relation

dim(S ) = |S|.
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31 ClaimLet S = S1 tS2 be finite sets. Then S =S1 ⊕S2.

Proof: Recall that T1⊕T2 is the set of vectors written as pairs (t1, t2), where t1 ∈T1

and t2 ∈T2. A basis for T2 ⊕T2 is given by the disjoint union of the basis for T1

and T2.

Linear algebra is an extremely flexible piece of mathematical theory. In the land
of linear algebra, we can take sums of maps not just along the domain of the map,
but additionally along the target. This is an advantage over maps between sets.

32 Definition

Summing the

Target

Let f1 : S → T1 and f2 : S → T2 be two linear maps. Define the sum over the
target as f1 ⊕ f2 : S →T1 ⊕T2 by

( f1 ⊕ f2)(s) = ( f1(s), f2(s)).

33 Definition

Summing the

Domain

Let f1 : S1 → T and f2 : S2 → T be two linear maps. Define the sum over the
domain as f1 ⊕ f2 : T1 ⊕T2 →S to be the map which sends

( f1 ⊕ f2)(s1, s2) = f1(s1)+ f2(s2).

These definitions generalize the disjoint union of two maps between sets. When-
ever f1 : S1 → T, f2 : S2 → T are two maps of sets, then f1 t f2 : S1 tS2 → T has
linearization given by f1 ⊕ f2 : S1 ⊕S2 →T .

A return to Graphs

Let’s try to use these tools to combine those maps that we were talking about
earlier from graph theory.

34 DefinitionGiven a graph G , define the

– edge space E to be the F2 vector space generated on a basis E .
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– vertex space V to the F2 vector space generated on a basis V .

– edge boundary map ∂ : E → V by

∂ := ∂l ⊕∂r .

In this new setup, elements of E correspond to subsets of E(G), and the vector
addition on E corresponds to symmetric difference. Since each vector s ∈ E

corresponds to a subset of E (G), we will frequently say that an edge e is in s if e is
contained in the corresponding subset. Likewise, we will say the size of a vector s
is the number of edges in the corresponding subset.

v1

e1

v2

e2

v3

35Example Let’s try this new viewpoint by applying it to the
graph on the left. The edge space is given by the
basis {e1,e2}, and the vertex space has the basis
spanned by {v1, v2, v3}. In this basis, the edge
boundary map can be expressed as the matrix:1 0

1 1
0 1

 : E → V

We have a nice algorithm for writing out the matrix of the edge differential if we
use the standard basis for E and V . Each row of the matrix will represent a vertex,
and the columns are indexed by the vertices.‘’ Then whenever an edge in e is has
a vertex v as an endpoint, we put a 1 in the corresponding place in the matrix.
As a result, the number of ones in each column will be exactly 2 (as each edge
has 2 endpoints,) and the number of ones in each row will be the degree of the
corresponding vertex.

It will be convenient for us to refer to the elements of E and V by simply referring
to them by the corresponding vertices and edges, so whenever we write a vertex
v ∈ V , or edge e ∈ E , we will mean the corresponding basis vector. A good way to
verify that we’re on the same page for notation is to check that

∂(e2) = v3 + v2

for the graph drawn in Example 35 .

A reason to upgrade this combinatorial set-up to an algebraic framework is that
many graph properties of subsets of edges can be easily stated in terms of proper-
ties of the edge differential.
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36 Claim

Identifying Paths

Suppose that v, w ∈V are two vertices which be-
long to the same connected component. Let
P be the path which connects v and w . Then
∂(P ) = v −w . In particular,

v −w ∈ Im (∂).

0

0

2

1

2 0

1

Proof: Let P ⊂ E be the subset of edges that correspond to a path between v, w .
Then ∂(P ) is the subset of vertices which belong to P counted with multiplicity
based on how many edges they show up in. Since the interior vertices each belong
to 2 edges in the path, they get counted with multiplicity 2, which is congruent
to 0 mod 2. The boundary vertices, {v, w} each get counted once. Therefore,
∂(P ) = {v, w} = v −w .

37 Corollary

Identifying Cycles

Let C ⊂ E be a subset of edges that form a cycle, and let c ∈ E (G) be the vector
corresponding to that cycle. Then ∂(c) = 0.

It is not the case that the set of cycles forms a subspace of E , as the sum of two
cycles will usually be just the disjoint union of two cycles. However, we can still
look at the smallest subspace of E which contains every cycle.

38 Definition

Cycle Space

Define C , the cycle space, to be the subspace spanned by all the edge sets giving
cycles in E .

39 ClaimThe cycle space can be related to the boundary by

C = ker∂.

Proof: The forward direction follows from Claim 36 . To show that that every
element of the ker∂ is a sum of cycles, we will use a greedy algorithm which
decomposes an element s ∈ ker∂ into a sum of cycles.
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We induct on the number of edges in s ∈ ker∂. Pick any edge e1 in s. Since s ∈ ker∂,
there must be another edge e2 ∈ s with left endpoint equal to e1’s right endpoint.
This process constructs a path, and by finiteness of the graph this path must
eventually cross itself. This gives us a cycle c1 ∈ s, so we have

s = s′+ c1

where s′ has fewer edges than s, and s′ ∈ ker∂. By our induction hypothesis, we
know that s′ is a sum of cycles; therefore we can find a decomposition of s into a
sum of cycles.

We now can associate to a graph G a subspace C ⊂ E which describes the set of
cycles, and this subspace is easy to compute (as it is simply the kernel of a linear
map.) We’ll use this subspace to give a definition of the number of independent
cycles in our graph.

40Definition

Betti Numbers

Let G be a graph. The zero Betti number, denoted by b0(G), is the number
of connected components of G . The first Betti number, denoted by b1(G) :=
dim(ker(∂)) = dimC , is the cycle number of G .

These numbers are a topological invariant of our graph. One would hope that the
number of cycles or connected components does not vary as we subdivide an
edges of our graph.

41Theorem Suppose that H =G ÷x y . Then b1(G) = b1(H).

Proof: The remainder of this section is spent on this proof. The goal will be to
show that the spaces C (H) = ker(∂H ) and C (G) = ker(∂G ) are isomorphic. We
will use our topological intuition to construct maps of vector spaces between
E (G) ↔ E (H) and V (G) ↔ V (H). The proof can be broken into a topological
portion, and an algebra portion. On the topological part, we need to create maps
between vector spaces encoding our intuition on what happens to edges and
vertices in the process of subdivision.

E (G) V (G)

E (H) V (H)

∂G

iE iV

∂H

E (G) V (G)

E (H) V (H)

∂G

∂H

πE πV

The second thing we’ll need to do is some linear algebra to show that these
topologically inspired maps give rise to isomorphisms between the cycle spaces.
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42 Claim

Definitions of

Maps

Define the following maps between edge and vertex spaces.

– As V (H) =V (G)∪ {vx y }, there is a natural inclusion iV : V (G) ,→V (H). The
map iV : V (G) ,→ V (H) is the linearization of that map.

– We have that E(H) = E(G)∪ {xvx y , vx y y} \ x y. Define the map iV : E (G) →
E (H) on the basis of E (G) by

iE (e) =
{

e if e 6= x y
xvx y + vx y y if e = x y

– We slightly modify the map πE . In the basis E(H) for E (H), we define the
projection map by

πE (e) =


e if e 6= xvx y , vx y y
x y if e = xvx y

0 if e = vx y y

– Define the πV : V (H) → V (G) by defining the values on the basis

πV (v) =
{

v if v 6= vx y

y if v = vx y

These maps between edge spaces and vertex
spaces seems a tad bit arbitrary, but are are in-
spired bo the figure to the right. In short, the
inclusion map iV : E (G) → E (G ÷ x y) works by
seinding the edge to the sum of two edges. When
undoing a subdivision, we make a choice in the
choice of contraction, which gives us the def-
inition for the map πE and πV . We chose the
contraction which squashes the edge vx y y .

x

x y

yvx y

G

G ÷x y

While
the topology is all fine and good, to show that these have some meaning for cycle
spaces we’ll show that these map are chain map, which means that it preserves
the boundary operation. See Station 4 for the full definition.

43 ClaimThe following squares commute:

E (G) V (G)

E (H) V (H)

∂G

iE iV

∂H

E (G) V (G)

E (H) V (H)

∂G

∂H

πE πV .
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We will first check that this is true for the square given by the inclusion.

∂H (iE )(e) =
{
∂H (e) if e 6= x y
dH (xvx y + vx y y) if e = x y

=
{
∂H (e) if e 6= x y
x + vx y + y + vx y if e = x y

=
{

iV ∂
G (e) if e 6= x y

iV ∂
G (x y) if e = x y

=iV ∂
G (e)

For the other square,

∂G (πE )(e) =


∂G (e) if e 6= xvx y + vx y y
∂G (x y) if e = xvx y

∂G (0) if e = vx y y

=


πV ∂
H (e) if e 6= xvx y , vx y y

x + y if e = xvx y

0 if e = vx y y

=


πV ∂
H (e) if e 6= xvx y , vx y y

πV (x + vx y ) if e = xvx y

πV (vx y + y)if e = vx y y

=πV ∂
H (e)

Whenever we have a chain map, we get an induced map between the cycle
spaces.

44Lemma

Induced Map on

Cycle Spaces

Suppose we have a diagram of maps as given:

E (G) V (G)

E (H) V (H)

∂G

fE fV

∂H

Then the restriction of ( fV )|ker(∂G ) ⊂ ker∂H .

Proof: Suppose that c ∈ ker∂G . Then we want to show that fE (c) ∈ ker∂H . This
means that we need to compute ∂H fE (c). By commutativity of the diagram,

∂H fE (c) = fV ∂
G (c) = fV (0) = 0.
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These results are listed in greater detail in ?? While we have now produced maps
between the cycle spaces of G and H , we still need to show that these maps are
isomorphisms.

45 ClaimThe restrictions of the map (iE )|ker∂G : ker∂G → ker∂H and (πE )|ker∂H : ker∂H →
ker∂G are inverses.

This proof is mostly a computation by hand. Again, we need to check two direc-
tions. Let’s start with πE ◦ iE = idker∂G . We have on a basis that

πE ◦ iE (e) =
{

e if e 6= x y
πE (xvx y + vx y y) if e = x y

=e

A similar proof works in the other direction.

iE ◦πE (e) =
{

e if e 6= x y
πE (xvx y + vx y y) if e = x y

Switching basis slightly

=


iE (e) if e 6= xvx y , vx y y
iE (x y) if xvx y + vx y y
iE (0) if e = vx y y

=


e if e 6= xvx y , vx y y
xvx y + vx y y if e = xvx y + vx y y
0 if e = vx y y

We’ve now reduced to three different cases. In the first case, we have an isomor-
phism on the nose. In the second case, we also have an isomorphism.

Let’s see if the third case even occurs. Let c be any element in the kernel of ∂H .
Then if c contains the edge xvx y , it must also contain the edge vx y y , as these are
the only two edges which contain the vertex vx y . As a result, we can throw the
third case out, as it is not contained in the cycle space. A key takeaway is that the
map iE ◦πE is not an isomorphism on the edge spaces, but it is an isomorphism
on the cycle spaces.

The same proof can be used to show that b0 is a topological invariant of our
space.
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46 Inclusion-Exclusion
One cannot use inclusion/exclusion to compute connected components. However, there

is another way.

Let G be a graph, and let A,B ⊂G be two subgraphs which cover G in the sense that G =
A∪B . There are several quantities of G which can be computed via an inclusion/exclusion
principle. For instance, both the number of edges and vertices in G can be computed by

|V (G)| = |V (A)|+ |V (B)|− |V (A∩B)| |E(G)| = |E(A)|+ |E(B)|− |E(A∩B).

This is not surprising, as both the number of edges and number of vertices are really set
theoretic properties of the graph.

A BA∩B

However, the number of connected components does
not satisfy the inclusion-exclusion property. In the
example on the left, b0(A) = b0(B) = 1, and b0(A ∩
B) = 2, but

b0(G) 6= b0(A)+b0(B)−b0(A∩B) = 0

This gives us a striking example that the global prop-
erty of connectedness does not break up well accross
multiple components! The problem in this siuation
is that A and B are connected across two different
components of their common intersection.

There is a useful example to keep in mind where the number of connected components
can be computed via inclusion-exclusion.

If the graph H is a forest, meaning that it is a disjoint
union of trees, then the number of connected compo-
nents can be computed via the formula

b0(H) = |V (H)|+ |E(H)|.

Since both V (H) and E(H) can be computed with
inclusion-exclusion, we see that b0(H) can be com-
puted in terms of the subgraphs of H whenever H is
a forest.

Both of the previous examples point to role that cycles play in computing the number of
connected components of G in terms of its subgraphs. One may also try to compute the
cycle number b1(G) by inclusion exclusion, and once again sees that this fails to satisfy
the inclusion/exclusion principle. However, there is a simple example to keep in mind
when this succeeds. When b0(G) = 1, then the cycle number can be be computed by

b1(G) = |E(H)|− |V (H)|+1

From this, we can make the following inclusion/exclusion computation.



Claim.Suppose that b0(A) = b0(B) = b0(G) = 1. Then

b1(G) = b1(A)+b1(B)−b1(A∩B)+b0(A∩B)−1.

This formula seems a bit ad-hoc, but can be understood as partitioning the cycles of G
into those cycles which are completely outside of B , completely outside of A, completely
contained in the intersection, or passing between A and B through a distinct connected
component of the intersection.

One interpretation of this is the following: if the conneected components of A∩B causes
us to overcount b0(G), then this overcount is realized in the undercount of b1(G). There
is a delicate balencing that occurs here, and problematically the numbers do not have
enough structure for us to remember all of the balencing that occurs. Fortunately the
numbers b0 and b1 are only shadows of vector spaces,

b0(G) = V (G)/ Im (∂) b1(G) = ker(∂)

and we can reconstruct the decomposition of cycles of G by using maps of vector
spaces.

Claim.There exists a map δ : ker(∂G ) → V (A∩B)/ Im (∂A∩B ).

Proof: Let c ∈ ker(∂G ) be a cycle of G . Let c|A ∈ E (A) be the restriction of the cycle to the
subgraph A. Note that c|A will no longer be a cycle. This truncated cycle will now have
boundary ∂A(cA) at every point where the cycle c crossed over into B , so ∂(cA) ∈ V (A∩B).
We define δ(c) := [∂(cA)] ∈ V (G)/ Im (∂G ).

This can be extended (see ?? ) to show that the failure of b0 to satisfy the inclusion/ex-
clusion principle is exactly equal to the failure of b1 to satisfy the inclusion/exclusion
principle so that:

0 = (b0(A∪B)− (b0(A))+b0(B)+b0(A∩B))

− (b1(A∪B)− (b1(A)+b1(B))+b1(A∩B))



Some Applications to 3-connected Graphs
We prove Tutte’s Lemma which states that every 3-connected graph G contains an
edge e so that G/e is still 3-connected. While this is an innocuous looking lemma,
it allows us to make induction arguments within the subset of graphs that are
3-connected. Using this lemma, we prove that the cycle space of a 3-connected
graph has a particularly nice basis.

5

If we remember that E and V come from the graph G they come with additional
algebraic structure. The most important structure is the preferred basis (given by
the vertices and edges.) While C does not come with a preferred basis, it still has
a preferred generating set: the cycles. However, there is no reason that the set of
cycles should be linearly independent.

v1

v2 v3

v4

v5

47Example

Faces as Basis

One thing which is interesting to note: when
looking at graphs, almost everybody comes up
with the same set of cycles for a basis for the cy-
cle space. For instance, in this graph, you would
probably say that the three cycles

{v1v2v5, v2v3v4, v1v5v3v4}

give a basis for the cycle space. The reason for
this is that we are naturally inclined to use the
faces from planar drawings as a basis for the cy-
cle space (and it does, indeed, form a basis!)

We could eliminate a few generators by restricting to a smaller set of cycles. For
example, an induced cycle of G is a cycle which cannot be made into 2 smaller
cycles with the addition of an edge in G .

48Claim The induced cycles of G generate the space C .

This set is still a redundant set of cycles, but without further conditions on the
graph there is not a clear candidate of generating cycle.

If a graph G is 3-connected, then there are enough cycles that we can be slightly
more picky when choosing a basis for the cycle space. The additional connec-
tivity allows us to pick cycles which do not separate the graph into different
components.
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49 DefinitionA cycle C is non-separating if G \C is connected.

A good example of non-separating cycles comes from a graph drawn in the plane.
A planar graph is called polyhedral if it is 3-connected. If a planar graph is poly-
hedral, then every face gives an example of non-separting cycle. In fact, these
are the only non-separating cycles of a planar graph, as every other cycle divides
the graph into an interior and exterior region. We will return to this discussion in
?? . There is a generalization of this characterization which does not need the
planarity requirement.

50 Theorem

Tutte

The cycle space of 3-connected graphs is generated by non-separating induced
cycles.

Before proving this theorem, it is useful to look at an non-example.

51 Example

Tutte

Counterexample

First, let’s look at a 2-connected graph where this
is not true. In this example, the cycle space is 3
dimensional, so one needs to pick 3 independent
cycles to get a basis. One can check by hand that
every such collection of 3 cycles will necessarily
include a generator which is separating.

The proof of this theorem relies crucially on a lemma of Tutte that allows us to
make induction-type arguments with 3-connected graphs.

Proof:We will use ?? to prove this by induction on the number of edges, and
follow the exposition in [Die00]. Let e be an edge of G so that G/e is 3-connected.
By our induction hypothesis, we assume that the theorem holds for G/e.

33



Tutte's Lemma
If G is 3-connected with more than 4 vertices, then there exists an edge e ∈G so that G/e
is still 3 connected.

52

Suppose for contradiction there is no such edge. Define the function I : E ×V →N by

I (uv, w) = Size of the smallest component of G \ {u, v, w}

Given our hypotheses we will prove that I (uv, w) has no minimal value which is clearly
impossible!

First we show that given our hypothesis, there is a pair (uv, w) so that G \ {u, v, w} is
disconnected. Pick any edge uv . By our hypothesis G/uv is 2-connected. Since G/uv is
2-connected but G is not, it must be the case vuv is part of a separating set of G/uv . Let
w be any vertex such that (G/uv) \ {vuv , w} is disconnected. Then u, v, w separate G .

Now we show that I has no minimal value. Pick any uv, w so that G \ {u, v, w} is discon-
nected. We will show that I (uv, w) is not minimal.

u v
w

C

x

Dy

Let C be the smallest component of G \ {u, v, w}. Be-
cause all three vertices are necessary to separate the
graph, w must have a neighbor in the component C .
Call this vertex x. Notice that the neighbors of x are
entirely contained in C . By our assumption, G/w x
is 2-connected. Therefore, there exists another ver-
tex y so that G \ w, x, y is disconnected. We will show
that this has a connected component which is smaller
than C .

Let D be a component of G \ {w, y, x} which does not
contain uv . x has a neighbor in D , otherwise G\{w, y}
would be disconnected. Therefore D ∩C is nonempty.
Furthermore, every vertex of D is contained in C , be-
cause D is disjoint from the connected components
of G \ {u, v, w} containing u and v , and additionally C
is a connected subset.

Since D does not contain x, we have that D is a proper subset of C . Therefore D is smaller
size than C . So I (w x, y) < I (uv, w).

Corollary (Characterization of κ(G) ≥ 3). Every 3-connected graph has a K4 minor.

The reverse direction holds as well (see Exercise P 11 .)



We prove the theorem by relating the vector
spaces C (G) and C (G/e). Consider the map

πE : E (G) → E (G/e)

πV : V (G) → V (G/e)

constructed in Claim 43 . We know that there is
then a map on the spaces of cycles π : C (G) →
C (G/e). In contrast to the example we consid-
ered earlier, it is possible that this map has a ker-
nel given by the triangles which are collapsed
to an edge under the contraction. We call these
cycles the fundamental triangles, and they span
the kernel of the map. We can construct chain
maps

ıE : E (G/e) → E (G)

ıV : V (G/e) → V (G)

giving rise to a chain map

i : C (G/e) →C (G)

which is a right inverse to the map π : C (G) →
C (G/e). Note that there are many different
choices that we could have made in constructing
the inverse map i .

a b

c

d

e f

π(a) π(b) π(c)

π(d)

π(e) π( f )

a b c d e

i (a) i (b)

i (c)

i (d) i (e)

53Corollary (Characterization of κ(G) ≥ 3). If c ∈C (G) is a cycle, and c ∈ ker(π), then c is
a triangle with one edge e. The set of such triangles generate ker(π).

Let’s fix some notation to improve readability of the proof. We will call a non-
separating induced cycle basic. Cycles which can be written as the sum of basic
cycles will be called good.

The idea of the proof is to start with a circle c ∈C (G), obtain a good cycle π(c) ∈
C (G/e), then try to lift this back to a new cycle i ◦π(c). Because i is only a right
inverse there will be a disagreement between c and the lift i ◦π(c) 6= c. We will
show that this discrepancy is a good cycle, which completes the proof.

54 ClaimEvery fundamental triangle is basic.
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Proof: Let C3 be a fundamental triangle. If C3 separates G , then C3/e separates
G/e. But C3/e only has 2 vertices and G/e is 3 connected. Therefore C3 is basic.

55Claim If c ′ ∈C (G/e) is basic, then i (c ′) ∈C (G) is good.

In the best case, we are in a scenario where

(G \ i (c ′))/e = (G/e) \ c ′,

which is connected. It follows that G \ i (C ′) is connected (and we may in fact
conclude that i (C ′) is basic).

The more difficult case to handle is when i (C ′) only passes through one end of
the contracted edge e. To handle this case, we will need to label the vertices near
the contracted edge e ∈G containing the possible lifts of C ′.

u ve ww

y

x

u

C ′C

G G/e

e

In this case there are 2 potential lifts of the cycle c ′– the one that goes through
x, and the one that passes through y . We will call these cx and cy respectively.
Note that if one of cx or cy is basic, then the other one is good as they differ by
fundamental triangles.

Suppose for contradiction that neither of these are basic. Then upon the removal
of cx or cy , the vertices x and y are isolated. Therefore the only neighbors of x
and y are in the set {x, y,u, v}. The removal of u and w would separate x, y from
G . But G is supposed to be 3-connected, which contradicts our hypothesis.

We now have all the pieces to complete our proof. Start with any cycle c ∈C (G).
Because i is an injective map on the cycle space,

c − i ◦π(c) ∈ ker(π),

and since ker(π) is generated by fundamental triangles, which are basic, we learn
that c is basic whenever i ◦π(c) is basic. By the claim, this is a basic cycle, proving
the theorem.

36



Exercises P

P1 ExerciseLet G be a graph. We call a vertex even if its degree is even, and odd otherwise.
Prove that there are an even number of odd vertices.

P2 Exercise

Bridges of

Konigsberg

A Walk is a sequence of vertices which are pairwise connected by edges, and we
are allowed to possibly to repeat vertices. Let G be a connected graph. Show that
there is a walk in G that uses every edge exactly 1 time if and only there are at
most 2 odd vertices.

P3 ExerciseA connected graph which contains no cycles is called a tree. Prove that the
following are equivalent:

– G is a tree.

– G is minimally connected, that is G \ e is not connected for any removed
edge e

– G has no cycles, but adding an edge between any two vertices which do not
have an edge already induces a cycle.

– Between every two vertices there exists a unique path.

– G is connected and has |V | = |E |+1.

P4 ExerciseShow that the edge connectivity is necessarily larger than the vertex connectiv-
ity.



P5Exercise Show that for every graph G , there exists a graph H so that G is a minor of H and
for all v ∈V (H), deg(v) ≤ 3.

P6Exercise A graph is called cubic if every vertex has degree exactly 3. Show that every graph
G is a minor of some cubic graph H .

P7Exercise Suppose for all vertices v ∈V (G), deg v ≤ 3. Show that the following are equiva-
lent:

– G is a topological minor of H .

– G is a minor of H .

P8Exercise Show that the reliability polynomial of a tree only depends on the number of
edges in the tree.

P9Exercise Produce two non-isomorphic graphs G and G ′ which are not trees and

RG (p) = RG ′(p).

P10Exercise Show that either RG (p) = 0, or RG (p) has no zeros in the interval (0,1).



P11 ExerciseShow that a graph G is 3-connected if and only if it contains a K4 minor.

P12 ExerciseDespite the cycle number being defined via the cycle space, we can compute it
without using all of this algebra.

– Let e be an edge so that G\e is still connected. Show that b1(G)−1 = b1(G\e).

– Suppose that a graph G is connected. Prove that b1(G) = |E |− |V |+1.

– Generalize the above formula to when b0(G) 6= 1.

P13 ExerciseRecall that b0(G) is the number of connected components of a graph G . Show
that b0(G) = dimV −dim Im (d).

P14 ExerciseCompute b1(Kn), the dimension of the cycle space of the complete graph on
n-vertices. What about b1(Km,n)?
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Planarity
A planar graph is a graph that can be drawn in the plane without edges crossings.
We look at relations between the number of faces, edges and vertices of a graph.
We also associate to every graph a dual graph. We touch on how the faces relate
to the cycle space construction from before, and show that certain graphs are not
planar.

1

While a graph is an abstract object, in practice we work with drawings of graphs for
our intuition. A planar graph is a graph we can draw without the edges crossing.
This means that all of the data of the graph can be easily read off of the picture.
We probably won’t ever use the actual definition of a planar graph, but it’s good at
least to write it down once:

1 DefinitionA planar representation of a graph G is a set of vertices V ⊂ R2 and a set of
continuous arcs { fe : I →R2}e∈E indexed by E such that

– If fe (t) = fe ′(t ′) and t , t ′ 6= 0,1, then e ′ = e and t = t ′. This means that the
paths corresponding to edges do not cross over the interiors.

– If uv is an edge, then fuv (0) = u and fuv (1) = v . This means that the paths
corresponding to each pair of vertices have endpoints on the appropriate
vertices.

We say that a graph is planar if it admits a planar representation. Note that it is
possible for a graph to have topologically non-isomorphic planar representations.

2 ExampleEven a graph as simple as a tree can admit differ-
ent planar representations. The trees on the right
are the same as graphs, but there is no way to dis-
tort the first diagram into the second without
creating a crossing at some point. To capture the
planar information of a graph combinatorially,
one can use the data of a rotation system.

A planar representation of a graph gives us a new piece of data: the faces of a
graph.
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3Definition A Face of a planar representation of G is a connected component of R2 \G . The
set of such components is denoted F (G).

Notice that this definition gives us a large “outer face” to the graph. To each face,
we get a closed walk which makes up the boundary of the face. Even though a
closed walk is not a cycle, it is an element of the cycle space.

4Definition Let G be a planar graph with a fixed embedding, and let F = { f1, . . . , fk } be the set
of faces. Let F be the Z2 vector space generated on the set F . Let ∂F : F → E be
the map which sends each face to the subset of edges in it’s boundary (counted
with multiplicity.)

This is a construction very similar to those that we’ve employed for our algebraic
analysis of graphs, just we’ve included faces into it.

5Claim Consider the following sequence of vector spaces and functions:

F E V
∂F ∂E

This is a chain complex, in that ∂E ◦∂F = 0

Proof: In order to show that ∂E ◦∂F = 0, it suffices to check on a basis of F . Let
f ∈F be a face. Then ∂F ( f ) is a union of cycles. By ??, this lies in the kernel of ∂E .

We will develop the algebraic theory of chain complexes throughout the course–
for more details, see Appendix ??. We’ll bring this complex back throughout this
section. Let’s look at some basic facts about planar graphs.

A useful geometric construction for planar graphs is the dual graph construction.
Given a graph G with a planar embeddings, we can construct a multigraph which
is dual to it.

6Definition

Multigraph

A multigraph on n vertices is a symmetric n ×n matrix with entries in N.

The coefficient in the i , j spot of the matrix denotes the number of edges that lie
between the i and j vertex.
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7 ExampleFor example, here is the multigraph given by the
matrix 

0 2 0 0
2 0 1 3
0 1 2 1
0 3 1 0


1

2

3 4

Let G be a planar multigraph. From here we can construct a new planar multi-
graph, called the dual of G , interchanging the roles of vertices and edges.

8 DefinitionLet G be a planar multigraph. Let G∗ be the graph where

V (G∗) = F (G),E(G∗) = E(G),F (G∗) =V (G)

We have an edge between two vertices between fi and f j , for each common edge
in the boundary of the faces fi and f j .

9 ExampleAn example of a graph G in black and its corre-
sponding dual multigraph G∗ in red. Notice that
the degree of each vertex counts the number of
edges in the boundary walk of the graph in the
dual, and vice versa. Also notice that the double
dual, (G∗)∗, is G .

One can similarly define the boundary maps and face maps to the theory of
multigraphs, either by taking the counts of edges mod 2 or by using directed
multigraphs.

Duals and

Homology

In both cases, we see that the theory of planar graphs comes with two equally
good chain complexes. On one hand, we can look at F (G) → E (G) → V (G). On the
other hand, we might have instead of chosen to study F (G∗) → E (G∗) → V (G∗).
By identifying F (G∗) = V (G), we get a different set of maps:

F E V
dE dV

which is a kind of “dual complex” to our original theory.

10 ClaimIf G is a simple graph, then every vertex of G∗ has degree at least 3.
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Proof: This is because each vertex of G∗ corresponds to a face in G , and the
boundary of such faces are cycles of G . Since G is simple, each cycle must have
length at least 3. This means that each face borders at least 3 other faces, so the
degree of each fi ∈V (G∗) must be at least 3.

11Claim

Basic Graph

Properties

Let G be a connected simple planar graph, and let V ,E ,F be the set of vertices,
edges and faces.

– 2|E | ≥ |V |
– 2|E | ≥ 3|F |

Proof: The first claim follows from our argument about average degree and edges
in Claim ??. Since G is connected, the average degree of a vertex is at least 1.
The second claim is actually the same as the first claim, just applied to the dual
graph. As every vertex in G∗ has degree at least 3, we have that

2E(G) = 2E(G∗) = ( Average degree in G∗ )|V (G∗)| ≥ 3|V (G∗)| = 3|F (G)|.

The structure of a graph gives us an additional relation between the number of
vertices, edges and faces.

12Theorem

Euler's Formula

Let G be a connected planar graph. Then

|V |− |E |+ |F | = 2.

Proof: This theorem is traditionally prove by induction on the number of edges.
Of course, we cannot induct on the number of edges right away, because if we
remove an edge from a graph it may not remain connected. However, with every
connected graph G , there exists an edge so that G \ e is connected, or G is a tree
(See Exercise ??.) Therefore, checking trees suffices as a base case.
In the case of a tree, we know that the number of edges is 1 fewer than the number
of vertices, and the number of faces is 1. This gives us

|V |− |E |+ |F | = |V |− (|V |−1)+1 = 2.

For the induction step, let G be a planar connected graph, and let e be an edge
so that G \ e is still connected. Since G \ e is still connected, it is the case that e
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belongs to 2 different faces. Therefore, E (G \ e) = E (G)−1, and F (G \ e) = F (G)−1.
We conclude that

|V (G)|− |E(G)|+ |F (G)| =|V (G \ e)|− (|E(G \ e)|+1)+ (|F (G \ e)|+1)

=|V (G \ e)|− |E(G \ e)|+ |F (G \ e)|
=2.

A nice way to prove this is to use the algebraic graph techniques that we’ve been
working on. See Exercise ?? for details on how one would prove this.

13 CorollaryLet G be a simple planar graph. If |V | ≥ 3, then |E | ≤ 3|V |−6.

Proof: Take a planar simple graph G with at least 3 vertices. Suppose that it is not
the case that every face of G is a triangle. Then you may add an edge to G and
keep it planar whenever G has a face which is not a triangle. When all of the faces
of G are triangular, the graph is maximally planar.
Let G ′ be a maximally planar graph containing G . In this situation we have the
additional equality 2|E(G ′)| = 3|F (G ′)|. From Euler’s formula, we have

|V (G ′)|− |E(G ′)|+2/3|E(G ′)| = 2

Since G ′ has more edges than G , we can rearrange this equality to |E | ≤ 3|V |−6.

These simple inequalities already rule out the existence of a planar embedding
for many graphs.

14 CorollaryFor every n ≥ 5, the complete graph Kn admits no planar embedding.

Proof: It suffices to show this for n = 5. For K5, we have that |E | = 10, and |V | = 5.
This fails to satisfy |E | ≤ 3|V |−6. Therefore K5 is nonplanar.

This gives us actually a general criterion we can check to see if a graph is non-
planar, as if even G contains K5 as a topological minor, it cannot be planar.

15 CorollaryThe only Platonic solids are the tetrahedron, cube, octahedron, dodecahedron or
icosahedron.
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Proof: Recall that a Platonic solid is one where all the vertices have the same
degree and all of the faces have the same number of edges. We can take any poly-
hedron and convert it into a planar graph by stereographic projection. Therefore,
to each platonic solid we should look at a graph which has vertices of degree m,
and faces n boundary edges.
Since we know the degree and size of each edge, we can state the exact relations:

2|E | = n|F |

2|E | = m|V |
Therefore, |F | = m/n|V |. Applying this to Euler’s formula tells us:

|V |−m/2|V |+m/n|V | = 2

Now, we have some additional geometric bounds we may place on m and n.

– We know that n is at least 3 (all faces have at least 3 sides.)

– We get the bound

m

(
1

n
− 1

2

)
>−1

from the Euler characteristic formula. This means that m cannot be greater
than 5. Another interpretation of this is that you cannot pack more than 5
regular polygons around a point and have the angles at the vertex sum to
less than 2π.

– m must be at least 3. The only valid values of m are now 3, 4, 5.

– By taking a dual polygon, we get similar restraints on n.

Tabulating our results we have:

m n |V | |E | |F | Shape
3 3 4 6 4 Tetrahedron
3 4 8 12 6 Cube
3 5 20 30 12 Dodecahedron
4 3 6 12 8 Octohedron
5 3 12 30 20 Icosohedron

There is a kind of duality that you might notice here on first inspection. First of, in
the proof, it seems like the values of m and n are exchangeable. This is reflected in
the platonic solids that we’ve found- they come in pairs where the roles of vertices
and faces are reversed. These dual-polytopes pairs are given by dual-graphs.

Polytopes

Outside of the Platonic solids, there are many different types of polytopes that
one can study and represent with graphs. For instance, a quasi-regular polyhedra
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is allowed to have 2 different kinds of faces that alternate around each vertex, and
their classification follows a similar argument as the one used above. The general
theory of understanding convex polytopes branches substantially into algebraic
topology. For instance, understanding the simplicial convex d-polytopes can be
understood in just the number of facets it has in every dimension( [Sta80]).
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Graph Colorings
We return to a historic problem: how many colors are needed to color a map. We
first explore abstract colorings of maps, including coloring estimates, chromatic
polynomials, and properties of 2-colorable graphs. We then later turn to coloring
planar graphs, proving the 6 and 5 color theorem.

2

We’re going to take a slight detour from planar graphs to talk about graph
colorings, which are a major tool in graph theory. Eventually, we’ll bring this back
to planar graphs when we discuss colorings of planar graphs.

16Definition

Colorings

Let G be a graph. A k-coloring of a graph G is an assignment f : V → {1,2, . . . ,k}
such that if x y ∈ E , f (x) 6= f (y). The minimal k such that a k coloring of G exists
is called the chromatic number of G and is denoted γ(G).

17Example The graph on the right, despite not containing
a complete graph on 4 vertices, still requires a
minimal of 4 colors to color. The removal of the
dashed edge would lower the chromatic number
to 3.

Colorings, like connectivity, are both influenced by local properties of the graph
and by global properties of the graph. For instance, a local result is:

18Claim Let ∆(G) be the maximal degree of vertices in G . Then G admits a ∆+1 coloring.

A global result on coloring is:

19Claim Let G be a graph. Then

γ(G) ≤ 1

2
+

√
2|E |+ 1

4

Proof: Create a multigraph KG on γ(G) vertices, where each vertex represents one
color class from G , and you draw an edge between two vertices if the color classes
have an edge between them. If this is an efficient coloring, then this multigraph
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must have edges between every two color classes; otherwise those classes could
be labeled the same way (see Figure ?? for an example of these graphs.) Since this
is a complete graph on γ(k) vertices, G must have at least 1

2 k(k −1) edges.
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Vector Spaces, Sets, and Diagrams
Before we start with the development of homological algebra, it is a good idea to
set up some common conventions and diagrams for simplifying linear algebra.

1

These are some class notes! Please lets me if you know see any errors. Here we
will flesh these methods out in more detail before developing chain complexes.

1 Definition

Direct Sum

Let V1 and V2 be vector spaces. The direct sum of V1 and V2 is the vector space of
pairs of vectors, and is denoted

V1 ⊕V2 := {(v1, v2) | v1 ∈V1, v2 ∈V2}.

The vector addition on V1 ⊕V2 is done component wise,

(v1, v2)+ (w1, w2) = (v1 +w1, v2 +w2).

The scalar multiplication acts on all components simultaneously,

λ · (v1, v2) = (λ · v1,λ · v2).

2 Example

Real n
dimensional

space

The set of n-tuples of real numbers is usually denoted Rn . Another way of
presenting this vector space is

Rn =R⊕R⊕·· ·⊕R⊕R︸ ︷︷ ︸
n

where now each “vector” ri ∈ R1
i is a scalar.

The direct sum operation is commutative, in that the vector spaces V1 ⊕V2 is iso-
morphic to V2 ⊕V1. Additionally, the direct sum of vector spaces is an associative
operation so that the vector spaces (V1 ⊕V2)⊕V3 is isomorphic to V1 ⊕ (V2 ⊕V3).
If this looks suspiciously like addition on the integers to you, you’re picking up on
an intertwining between these two operations via dimension:

dim(V1 ⊕V2) = dim(V1)+dim(V2.)
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3Example The rank nullity theorem can be restated as: If f : V →W is a linear map, then

V ' ker f ⊕ Im f .

Given vector spaces V1,V2,W , and maps f1 : V1 →W , f2 : V2 →W , one can create
a new map from V1⊕V2 →W , which is defined by taking the sum of the two maps:

f1 ⊕ f2 : V1 ⊕V2 →W

(v1, v2) 7→ f1(v1)+ f2(v2).

We will frequently represent this composition either diagrammatically or using
matrices. This is a useful shorthand, and we will use it throughout this section on
chain complexes.

V1

⊕ W

V2

f1

f2

(
f1 f2

) ·(v1

v2

)
= (

f1(v1)+ f2(v2)
)

.

There is nothing that limits us to taking the direct sum of more than one map
along the domain.

4Definition

Sum across

common target

Let fi : Vi → W be a collection of maps. Then define
⊕k

i=1 fi :
⊕k

i=1 Vi → W be
the map defined on tuples by

(⊕
fi

)
(v1, . . . , vk ) =

k∑
i=1

fi (vi ).

Just as we can take the sum along the domains of maps, we are also allowed to
take sums along the targets of the maps. Let g1 : V →W1 and g2 : V →W2 be two
linear maps. Then denote the direct sum along the target

g1 ⊕ g2 : V →W1 ⊕W2

v 7→(g1(v), g2(v).)

52



Just as we did for direct sum along the domain, we can represent these maps
diagrammatically or with matrices.

W1

V ⊕

W2

g1

g2

(
g1

g2

)
· (v

)= (
g1(v1)
g2(v2)

)
.

We can quickly do this with many targets at the same time.

5 Definition

Sum across

common domain

Let gi : V →Wi be a collection of linear maps. Define their direct sum to be

k⊕
i=1

gi : V →
k⊕

i=1
Wi

v 7→(g1(v), g2(v) · · · , gk (v)).

By combining both processes, we can create maps from many domains and
targets simultaneously.

6 Definition

Sum across

domains and

targets

Let fi j : Vi →W j be a collection of linear maps. Define their direct sum to be

⊕
i , j

fi j :
m⊕

i=1
Vi →

n⊕
j=1

W j

(v1, . . . , vm) 7→
(

m∑
i=1

fi ,1(vi ),
m∑

i=1
fi ,2(vi ), . . . ,

m∑
i=1

fi ,n−1(vi ),
m∑

i=1
fi ,n(vi )

)
.

We again have diagrammatic and matrix notations for these maps.

V1 W1

⊕ ⊕
V2 W2

(
f11 f21

f12 f22

)(
v1

v2

)
=

(
f11(v1)+ f21(v2)
f12(v1)+ f22(v2)

)
.
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7 Inclusion- Exclusion with 2 sets
Suppose that we have a decomposition A = S1∪S2. Then the sizes of these sets are related

by the inclusion-exclusion formula: 0 = |A|− ((|S1|+ |S2|))+|S1 ∩S2|.

We will first translate the sets A,S1,S2 and S1 ∩S2 into vector spaces. We take a slightly
different approach than before. To each set U , let F (U ) := hom(U ,Z2). Note that F (U ) ∼=
U , the Z2 vector space whose basis is given by U , but not canonically isomorphic. The
advantage with working with the vector space F (U ) is that it is canonically defined (i.e.
doesn’t come with a preferred basis.) Each element φ ∈ F (U ) can be thought of as an
assignments of 0’s and 1’s to the elements of U .

A slightly confusing feature of working with this vector space is that functions between
sets translate into functions going the other direction on the vector spaces,

f : U →V

F (U ) ←F (V ) : f ∗.

The map f ∗ is called the pullback map, and it is defined via precomposition. Given an
element φ ∈F (V ), the pullback along f is the map (φ◦ f ) ∈F (U ). I find the clearest way
to think about this is interpret F (V ) as the space of measurements on V . Then a function
f : U → V yields for each measurement φ : V → Z2 a new measurement f ∗(φ) on the
space U . The way this measurement f ∗(φ) works is by taking elements u ∈U , sending
them to V , and then performing the measurement φ there:

f ∗(φ)(u) :=φ( f (u)).

Remark.The function F : Sets → Vect turns problems about sets into problems of vector
spaces. This function is an example of a functor. Because F reverses the directions of
functions, we call this a contravariant functor. The general theory of functors belongs to
a branch of mathematics called category theory, which studies mathematics from the
perspective of general properties of functions.

An important feature of the functor F is that it exchanges cardinality with dimension:

|U | = dim(F (U )).

Let’s return to the setting of inclusion-exclusion. Suppose that we have a decomposition
A = S1 ∪S2. We can encode this decomposition in the following maps between sets:

S1 ∩S2 S1

S2 A

i1

i2 j1

j2

F (S1 ∩S2) F (S1)

F (S2) F (A)

i∗1
i∗2 j∗1

j∗2

.



Theorem.Let A0 = F (A), A1 = (F (S1)⊕F (S2)) and A2 = F (S1 ∩ S2). Let i∗ := i∗1 ⊕ i∗2 :
A1 → A2, and let j∗ := j∗1 ⊕ j∗2 : A0 → A1 as drawn below:

F (S1)

F (S1 ∩S2) ⊕ F (A)

F (S2)

A2 A1 A0

i∗1 j∗1

j∗2i∗2

i∗ j∗

The map j∗ is an inclusion, the map i∗ is surjective, and ker(i∗) = Im ( j∗).

Proof: We show that the map j∗ is an inclusion. Let φ ∈F (A) be a non-zero element, and
let a ∈ A be the element so that φ(a) = 1. Since A = S1 ∪S2, there is an element b ∈ S1

or b ∈ S2 so that j1(b) = a or j2(b) = a. Without loss of generality, suppose b ∈ S1. We
can then compute that j∗(φ) = (φ◦ j1,φ◦ j2) and φ◦ j1(b) 6= 0. This proves that j∗(φ) is
nonzero, so the map j∗ has trivial kernel and is therefore injective. A similar proof shows
that i∗ is surjective.

We now show that ker(i∗) = Im ( j∗). For any element a ∈ S1 ∩S2, we note that

(i∗ ◦ j∗(φ))(a) =φ(( j1 ◦ i1)(a))+φ(( j2 ◦ i2)(a))

Since ( j1 ◦ i1)(a) = ( j2 ◦ i2)(a),

=2φ( j1 ◦ i1(a)) = 0

This shows that Im ( j∗) ⊂ ker(i∗). The reverse inclusion is by a similar argument. ∂2

We can now prove Inclusion-Exclusion for two sets. We will instead show that dim A0 −
dim A1 +dim A2 = 0 using two applications of the rank-nullity theorem.

dim A0 −dim A1 +dim A2 =(dimker( j∗)+dim Im ( j∗))− (dimker(i∗)+dim Im (i∗))+dim A2

As the map j∗ is injective and i∗ is surjective

=(0+dim Im ( j∗))− (dimker(i∗)+dim Im (i∗))+dim Im (i∗))

=dim Im ( j∗)−dimker(i∗)

=0.



Connected Components, and Toplogy
In this section we introduce some basic notions from topology which will motivate
some of our future discussions.

2

It’s beyond the scope of this course to define what a topological space is, and
the functions between those topological spaces. The main framework that we’ll
need is to know the following facts about topological spaces.

– Topological spaces are sets with some additional structure (called a topol-
ogy.)

– There are certain functions between these sets, called continuous functions,
which preserve the useful properties of the topology.

– The composition of continuous functions is again continuous.

– If X is a topological space, and Z2 is the topological space with two points,
then the set of continuous functions C 0(X ,Z2) is the a vector space. Fur-
thermore, dim(C 0(X ,Z2)) is the number of connected components of X .

These are the only properties of topological spaces which we will need to continue
this discussion.

8Example The basic example of a topological space is X :=R. The functions from f :R→R

which are continuous are exactly the continuous functions you know and love,
satisfying the property

lim
xi→x

f (xi ) = f (x).

This property is fondly phrased as “when you draw the graph of f (x), there are no
jumps in the graph. ”

Some more interesting examples of topological spaces are things like circles, tori,
disks, spheres, graphs.

Our intuition for continuous maps is that they are the functions between topo-
logical spaces which send nearby points to nearby points. We give a very brief
overview of some concepts from topology in Example 10 .

We define the connected component space of X to be the vector space

C 0(X ) := hom(X ,Z2)
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of continuous functions from X to the two point set. One can think of this as
assigning a color to each connected component of the space X , and the num-
ber of colorings (determined by the dimension dimC 0(X )) tells you how many
connected components there are.

X

φ

Z2

9 Claim

Pullback Map

Given a continuous f : X → Y between topological spaces, there is a map

f ∗ : C 0(Y ) →C 0(X ).

Proof: The pullback function is defined as before:

f ∗ : C 0(Y ) →C 0(X )

φ 7→(φ◦ f )

The only thing to check is thatφ◦ f is a continuous map from X →Z2; this follows

from the composition of continuous maps being continuous. ∂2

What this claim means is that we can track how the connected components of
X are mapped to connected components of Y by using the pullback map. One
interpretation of this is that given a map f : X → Y , we can “color” the connected
components of X by the connected components of Y .

This framework should look very familiar– it is the same set-up that we used to
describe the number of elements in sets. The connected component space C 0(X )
turns questions about connected components into problems in linear algebra
instead. Let us take the annulus, and decompose it into two sets as drawn below.
This configuration does not respect an inclusion-exclusion like property in the
usual sense, in that U1,U2, X each have one connected component, but U1 ∩U2

has two connected components.

X

U1

U1 ∩U2

U2

=? -+
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10 Topology 101
A topological space is a set, equipped with the additional data of open sets which deter-

mine which points on the topological space are close to each other. In this section, we give

a quick overview of point-set topology.

Definition.A topological space is a pair (X ,U ), where X is a set, and U is a specified
collection of subsets of X , called open sets satisfying the following axioms:

– The empty set and whole space X are open sets.

;, X ∈U

– Any union of open sets is an open set.

Uα ⊂U ⇒
( ⋃
α∈A

Uα

)
∈U .

– Any finite intersection of open sets is an open subset.

B ⊂U , |B | <∞⇒
( ⋂
β∈B

Uβ

)
∈U .

Open sets are kind of strange things. Roughly speaking, if x and y mutually belong to an
open set, then we know that they are close to each other in some sense, but unlike in the
metric space a topology doesn’t tell you how near two points are two each other. It just
tells you that there is something containing both of them. We still get some relative idea
of closeness– if two points mutually belong to many open sets, then we think of them
being closer to each other.
Let’s introduce a few examples of topologies.

Example (The Discrete Topology). Let X be a set. The discrete topology has every subset of
X as an open set:

U = {U |U ⊂ X }

This topology has too many open subsets, and all of the points are very far away from
each other!

A common example of a topological space comes from metric spaces. We’ll say that a U
is open if every point in x is contained within an open ball inside of U .



Example.Let (X ,ρ) be a metric space. Say that a set U is ρ-open if for every point x ∈U ,
there exists an open ball Bε(y) with

x ∈ Bε(y) ⊆U .

Then the collection of sets
U = {U ⊂ X |U is ρ-open}

makes (X ,U ) a topology. For example, on the real numbers every open interval is an
example of an open set with this topology.

The interesting maps between topological spaces are those which preserve the topological
structure.

Definition (Continuous Maps). Let f : X → Y be a function, and U ⊂ Y . The pre-image of Y
is all the elements of X which get mapped to U ,

f −1(U ) := {x ∈ X | f (x) ∈U }.

A function f : X → Y is continuous if and only if for every open set U ⊂ Y , the preimage

f −1(U ) ⊂ X

is an open set of X .

Suppose that f : X → Y and g : Y → Z are continuous maps. Then for any U ∈ Z ,
(g ◦ f )−1(U ) is again an open set, which shows that the composition of continuous maps
is continuous.

A topological space is called disconnected if X =U1tU2, with U1,U2 nonempty open sets.
The connected components of a topological space are the smallest nonempty open sets
{Ui } so that X =⊔k

i=1 Ui . We say that in this case that X has k-connected components.

Theorem.Suppose that X has k-connected components. Let hom(X ,Z2) denote the set
of linear maps from X to the space with two points. Then

dim(hom(X ,Z2)) = k.



Let’s see exactly how the argument from that worked in the proof that |X | −
(|U1|+ |U2|)+ (|U1 ∩U2|) = 0 fails when we now try to understand the number of
connected components. The spaces U1,U2, X all have one connected component,
so

C 0(X ) =C 0(U1) =C 0(U2) =Z2.

On the other hand, U1 ∩U2 has two connected components, so C 0(U1 ∩U2) =
Z2 ⊕Z2. We now look at the inclusions of topological spaces

U1 ∩U2 U1

U2 X

i1

i2 j1

j2

C 0(U1 ∩U2) C 0(U1)

C 0(U2) C 0(X )

i∗1
i∗2 j∗1

j∗2

Z2 ⊕Z2 Z2

Z2 Z2

i∗1
i∗2 j∗1

j∗2

.

We then condense this down into a sequence of vector spaces by defining C 1(X ) :=
C 0(U1)⊕C 0(U2), and C 2(X ) :=C 0(U1 ∩U2). Similarly, we define the maps

j∗ := j∗1 ⊕ j∗2 : C 0(X ) →C 1(X )

i∗ := i∗1 ⊕ i∗2 : C 1(X ) →C 2(X ).

as before to give us a sequence of vector spaces and maps between them.

C 0(X )
j∗−→C 1(X )

i∗−→C 2(X )

This entire set-up so far follows the same steps as the inclusion-exclusion set up
for sets. At this point, we deviate from that example.

11Claim For the maps and sets above, the map j∗ is injective and Im ( j∗) ⊂ ker(i∗).

Proof: Let φ : X →Z2 be any continuous function. Then j∗(φ) is ( j1)∗φ⊕ ( j2)∗φ,
where ( j1)∗φ : U1 →Z2 and ( j2)∗φ : U2 →Z2 are the restriction of φ to the subsets
U1,U2. Then

(i∗ ◦ j∗)φ= (i∗1 ◦ j∗1 )φ+ (i∗2 ◦ j∗2 )φ

Since i∗1 j∗1 = i∗2 j∗2 ,

= 2(i∗1 ◦ j∗1 )φ= 0.

This proves that i∗ ◦ j∗ = 0, which is equivalent to Im ( j∗) ⊂ ker(i∗). ∂2

This claim is weaker than the statement that we had for the complex involving
sizes of sets. That claim stated that Im ( j∗) = ker( j∗), instead of only having
an inclusion, and that i∗ was a surjection. The discrepancy between these two
statements – equality of image and kernel versus inclusion of image into kernel –
gives us an exact measurement of how the inclusion exclusion principle fails.
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Chain Complexes, Homology, and Chain Maps
Homological Algebra is a algebraic tool that we’ll return to at several points
throughout the course, and it makes sense to combine the general facts of the
theory in one place.

3

12 Definition

Cochain

complexes

A cochain complex is a sequence of vector spaces, . . .C−1,C 0,C 1 . . . and boundary
maps d n : C n →C n+1 with the condition that

d n+1 ◦d n = 0.

Frequently, we represent a chain complex with the following diagram of vector
spaces and maps:

· · · C 1 C 0 C−1 · · ·
d 1 d 0 d−1 d−2

We will usually denote the chain complex as (C •,d•), where C • is the sequence of
modules and d• the sequence of boundary maps. 1

Abelian

Categories

In principle, all of the tools that we are developing with cochain complexes can
be defined with rings and modules instead of just vector spaces. In fact, the field
of homological algebra generally works over any Abelian category, which is
a category equipped with the necessary structures to make linear algebra-like
constructions.

13 ExampleLet’s look at a first example of a chain complex. Let C 1 =C 2 =C 3 =R2, so that we
may represent our boundary maps by matrices. Consider the sequence of maps

0 R2 R2 R2 00

1 0

0 0

 0 0

0 1


0

This is an example of a chain complex, as the composition of the differential is
zero:

d 3 ◦d 2 =
(
0 0
0 1

)
·
(
1 0
0 0

)
=

(
0 0
0 0

)
.

The boundary squaring to zero is equivalent to the statement that the image of
the boundary map d k is in the kernel of the map d k+1.
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The theory of cohomology was developed and inspired from techniques in topol-
ogy, but it is a very useful algebraic framework to have in mind. Abstractly, the
chain complexes and cohomology are a tool that explains the relations, and rela-
tions of relations, and higher meta-relations. For example, let V be a set with a
relation E ⊂V ×V on it. Let F (V ) and F (E) be the vector spaces given by maps
to the field of two elements. One might state the relationship now in terms of a
map d : F (V ) →F (E), where the image of a function φ : V →Z2 consists of all
relations E which have a member evaluating under φ.

However, the framework of homology allows us to put relations on the set of
relations, by introducing maps‘ F (E) →F (V ), and so on.

14Example ‘’ The example we considered in Theorem 46 is more than just a cochain complex;
it satisfies the stronger condition of being exact in that Im d k = kerd k+1. We’ll
explore exact complexes in more detail in the future.

15Example The examples considered in Station 2 of topological spaces covered with sets,
and the F (−) functor give another example of cochain complexes.

Before we study the general theory of cochain complexes, we would like to build
a combinatorial framework for describing topological spaces, which will give us
something concrete to stand on when we start describing cochain complexes in
this class. The natural extension of vertices, edges and faces are building blocks
called simplices.

16Definition

Geometric

Simplex

For k ≥ 0, a geometric k-simplex αk is the set of points in Rk+1 whose coordi-
nates are non-negative and sum to 1.

{(x1, x2, . . . , xk+1) | x1 +x2 +·· ·xk+1 = 1, xi ≥ 0}.

Given a simplex, we say that k is the dimension of αk .
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17 ExampleWe’ve already seen a couple of geometric simplices before, and given them some
common names.

Dim Name Notes Graphical Representation

0 Vertex
By the above definition, it specif-
ically the point 1 ∈R1.

1 Edge

Drawn with the above notation,
it is the line segment in the first
quadrant. Notice that the re-
striction of the line to either axis
gives us a point.

0 Face

A 2-simplex is a (filled in) tri-
angle, filling the first quadrant.
Again, the restriction to either
the coordinate planes or axis
gives us edges and vertices re-
spectively.

Simplices have the property that their boundaries are created of smaller simplices.
For instance, a 2-simplex (triangle) has 3 boundary 1-simplices (edges.) A 3-
simplex (tetrahedron) has 4 boundary 1-simplices. In general a k-simplex has
k +1 boundary k −1-simplices, called facets.

A simplex has more than just k − 1 dimensional facets; it also has boundary
components of dimension k − l . Each boundary component is uniquely specified
by the k − l +1 corner vertices it uses. If we wanted to build more complicated
spaces by gluing together simplices, one would imagine that we would take these
simplices and join them together along boundary strata picked out by identifying
their vertices.

18 Example

A simplicial

complex

Here is an example of a topological space con-
structed from simplices. It uses 8 vertices, has 13
edges, 8 faces, and 1 3-simplex (the right simplex
is not filled in.) Notice that this topological space
doesn’t have a consistent notion of “dimension”–
the dimension varies from 1-3 dimensional de-
pending on which part of the complex you look
at.

In practice, it is simpler to build in this identification of simplices from the very
beginning.
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19Definition

Abstract

Simplicial

Complex

A finite abstract simplicial complex is a pair X = (∆,S ) where

– S is a base set of vertices

– ∆⊂P (S) is a finite set of simplices

where the simplices are downward closed. This means that whenever σ ∈∆ and
τ⊂σ, then τ ∈∆. We say that σ ∈∆ is a k-simplex if |σ| = k+1. We will in this case
write that dim(σ) = k. If σ⊂ τ, and dimσ= dimτ−1, then we say that σ is a facet
of τ and write σlτ.

20Claim

Covers from

Simplices

Let X = (∆,S ). There is a collection of sets
{Us}s∈S so that

⋃
s∈S Us = X . Define for each

simplex σ ∈∆ the associated covering set

UI = X ∩⋂
s∈I

Us .

Furthermore, for every indexing set I , UI is con-
tractible, and is non-empty if and only if I = σ

for some simplex in our complex.

Note that for eachσlτ, there exists an inclusion
map iστ : Uτ→Uσ, and subsequently a map

i∗στ : hom(Uσ,Z2) → hom(Uτ,Z2).

We now define the reduced Cech cochain complex. For each i , let

C−1(X ,Z2) := hom(X ,Z2)

C i (X ,Z2) := ⊕
σ | dim(σ)=i

hom(Uσ,Z2).

Define the differential maps

d i : C i (X ,Z2) →C i+1(X ,Z2)

d i := ⊕
σlτ,dimσ=i

i∗στ.
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21 Claim

Simplicial

Cochains are a

complex

C •(X ,Z2) with differential d i is a cochain complex. Furthermore, a basis of the C i

can be indexed by the i -dimensional simplices of X , and the differential defined
on a basis element eσ can be written as

d(eσ) = ∑
τ |σlτ

eτ.

It is rarely the case that this will be an example of an exact chain complex. The
difference between Im d i+1 and kerd i will be an interesting thing to measure.
Because we are loathsome to leave the land of vector spaces, we will measure this
difference with a new vector space.

22 Definition

Cohomology

Groups

Let (C ,∂•) be a chain complex. The cohomology of C • at n is defined to be the
module

H n(C ) = kerd n

Im d n−1

As the composition d n+1 ◦d n = 0, this is well defined.

For convenience, we will often call the kernel of d n the set of cocycles, and write
it Z n . The image of d n−1 is the set of coboundaries and will be written B n . Then
H n(C ) = Z n/B n . The names cycles and boundaries correspond to the geometric
interpretation of the homology as given above.

23 DefinitionWe say that a chain complex is bounded if there exists n such that C i = 0 if |i | ≥ n.

While it doesn’t make sense to ask about the dimension of a chain complex, there
is a generalization of dimension which applies to chain complexes.

24 Definition

χ of a complex

Let (C ,d) be a bounded cochain complex with each C i of finite dimension. Then
the Euler Characteristic of (C ,d) is the integer

χ(C ,d) :=
∞∑

k=−∞
(−1)k dim(C k ).

Notice that the Euler Characteristic has no dependence on the differential of a
chain complex. However, it is intimately related to the chain structure through an
application of the rank-nullity theorem.
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25Lemma

Euler via

Homology

Suppose that the chain complex is bounded. Then

χ(C ,d) =
∞∑

k=−∞
(−1)k dim H k .

Proof: Because our complex is bounded, there exists n such that |k| ≥ n implies
that C k = H k = 0. Then we proceed by computing the sum:

χ(C ,d) =
i∑

k=−i
(−1)kC k

Applying the Rank-Nullity theorem

=
i∑

k=−i
(−1)k (dim(kerd k )+dim( Im d k ))

Shifting the sum

=
i∑

k=−i
(−1)k (dim(kerd k )−

i∑
k=−i

(−1)k−1 dim( Im d k ))

=
i∑

k=−i
(−1)k dim(kerd k )−dim( Im d k−1)

=
i∑

k=−i
(−1)k dim H k

∂2

One interpretation of homology is that it is an algebraic measure of how far a
sequence strays from being exact.

26Definition

Exact Sequences

A chain complex (C ,d) is called exact if H k (C ) = 0 for all k.

Notice by Lemma 25 , whenever (C ,d) is exact, the Euler characteristic χ(C ,d) =
0.

27Corollary Inclusion-Exclusion holds for sets.

Proof: In Theorem 46 we showed that the chain complex dictating inclusion-
exclusion for sets was exact. Furthermore, we showed that the inclusion-exclusion

principle for sets was equivalent to χ(A,d) = 0. ∂2
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Maps between chain complexes, addition and subtraction 4

Now that we have chain complexes, we want to look at functions that can go
between them. Just like when we study vector spaces and groups, it is only useful
to study the maps between these objects which preserve their structure. We want
the function between chain complexes to be compatible with the differential.

28 Definition

Chain map

Let (A,dA) and (B ,dB ) be chain complexes, and let f i : Ai → B i be a collection
of maps. Then we say that f • = { f i } is a cochain map if the following diagram
commutes for all i :

Ai Ai+1

B i B i+1

d i
A

f i f i+1

d i
B

.

A chain map not only preserves the boundary structure of the chain complex, it
also gives us maps between their homology groups.

29 Claim

Induced map on

cohomology

Let f • : (A,dA) → (B ,dB ) be a chain map. Then there is a well defined map
between the cohomology of (A,dA) and (B ,dB ) given by

f k : H k (A) →H k (B)

[a] 7→[ f k (a)].

Proof: In order to show that this map is well defined, we need to check two things.
First we must show that elements representing homology classes in A get sent
to elements representing homology classes in B . Second, we must show that
resulting map does not depend on the choice of representative for a.

– For the first part, let [a] ∈ H k (A) be an element of homology. In order for
[ f k (a)] to be an element of H k (B), we need that f k (a) ∈ kerdB . We make a
computation:

dB ( f k (a)) = f k+1(dA(a))

Since [a] ∈ H k (A), we know that a ∈ kerdA .

= f k+1(0) = 0.
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– For the second part, suppose we have 2 different representatives of the
same cohomology class [a] = [a′] ∈ H k (A). We would like to show that
[ f k (a)] = [ f k (a′)] ∈ H k (B).
Two classes in homology are equivalent if they differ by an element in the
image of d k−1. Therefore, we can prove the statement by finding an element
β ∈ B k−1 which satisfies:

[ f k (a)]− [ f k (a′)] = d k−1(β).

We can construct this β by looking at the difference a −a′. Since [a] = [a′],
there is an element α ∈C k−1(A) so that dA(α) = a −a′.
We now are in the place to make a computation.

f k (a)− f k (a′) = f k (a −a′)

= f k (dA(α))

=dB ( f k−1(α)).

We set β = f k−1(α) to realize the equivalence relation between the two
homology classes [ f k (a)], [ f k (a′)].

∂2

The most useful example of exact complexes are short exact sequences, which are
exact complexes of the form:

0 A B C 0i π .

From the definition of exactness i : A → B must be injective, and π : B →C must
be surjective. If we were only interested in vector spaces, then B = A⊕C would
be the only interesting data about this exact complex. If we think of A,B , and C
as being the generalizations of the numbers dim(A),dim(B) and dim(C ), then a
short exact sequence is a way to encode that dim(A)+dim(C ) = dim(B).

In the world of chain complexes, B could contain more data than just that of
the vector spaces A⊕C – we need to additionally consider the information that
comes from a differential.

30Definition Let (A,dA), (B ,dB ), (C ,dC ) be chain complexes. Let i • : A• → B• and π• : B• →C •

be maps of cochain complexes. We say that

0 A• B• C• 0i • π•

is a short exact sequence of chain complexes if for all k,

0 Ak B k C k 0i k πk

is a short exact sequence of vector spaces.
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The theory of short exact sequences of chain complexes is a lot richer than the
theory for vector spaces, because chain complexes contain much more internal
structure. We will now associate to each map f • : A• → B• a canonical short exact
sequence.

31 Definition

Cone of Chain

morphism

Let f • : A• → B• be a map of cochain complexes. Define the cone of f , to be the
cochain complex with

– Chain groups conek ( f ) = Ak+1 ⊕B k

– Differential defined by d k
cone(a,b) = (−d k+1

A (a),d k
B (b)+ f k+1(a)).

Note that for each k, Ak+1 → conek ( f ) → B k is a short exact sequence. We should
think of cone•( f ) as being the chain complex created by “attaching” A•+1 to B•.

32 Claim

Mapping cone is

complex

cone•( f ) is a cochain complex.

Proof: A convenient notation for this proof will be to think of d k
cone as having the

form of a matrix:

d k
cone =

(−d k+1
A 0

f k+1 d k
B

)
.

We can then compute d k+1
cone ◦d k

cone by using matrix multiplication.

d k+1
coned k

cone =
(−d k+2

A 0
f k+2 d k+1

B

)(−d k+1
A 0

f k+1 d k
B

)
=

(
d k+2

A ◦d k+1
A 0

d k+1
B ◦ f k+1 − f k+2 ◦d k+1

A d k+1
B ◦d k

B

)
Using the definitions of chain map and chain differential,

=
(
0 0
0 0

)
.

∂2

The cone of a morphism f • : A• → B• fits into a short exact sequence of chain
complexes,

0 B• cone•( f ) A•+1 0i π

where i ,π are the natural inclusion and projection maps. Notice the shift in the
index on the left hand side. A piece of notation that we will use for this shift in
index is

C •−1 =C •[−1].
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The way that A•+1 is glued to B• is dictated by the map f •. In this way, the
exact sequence of chain complexes not only remembers that we can put A•+1,B•

together to build cone•, but also how these things were glued together.

From this short exact sequence, we surprisingly get a long exact sequence of
homology groups.

33Theorem

SES-LES for

mapping cones

Let f • : A• → B• be a chain map. We have a short exact sequence of chain
complexes

0 B• cone•( f ) A•[1] 0i π

And we have the following long exact sequence of homology groups:

· · · H k (B) H k (cone( f )) H k (A[1]) H k+1(B) · · ·f i π f
.

Proof: Showing that this is a long exact sequence amounts to checking that
the sequence is exact at H k (B), H k (cone( f )), H k (A[1]). We will show that the
function is exact at H k (cone( f )) → H k (A[1]) → H k+1(B), which is perhaps the
most surprising statement in the proof. To show the isomorphism

ker( f : H k (A[1]) → Hk+1(B)) ' Im (π : H k (cone(h)) → H k (A[1]),

we will show two inclusions.

We prove that ker( f : H k (A[1]) → H k+1(B)) ⊂ Im (π : H k (cone( f )) → H k (A[1]).
Take a cohomology class [a] ∈ H k (A[1]) which is in the kernel of f so that

f ([a]) = [0].

Since conek ( f ) = Ak [1]⊕B k , a natural candidate for an element of conek ( f )
whose image under π is a would be (a,0). However, it may not be the case that
this a homology class, as

dcone(a,0) = (dA a, f (a))

which is not necessarily zero. As [a] ∈ H k (A[1]), we are guaranteed that dA a = 0.
However, the only data that we have about f (a) is that it is cohomologous to 0.
Since f ([a]) = [0], there is an element b ∈ B k realizing the equivalence relation
via f (a) = dB b. Replacing our candidate element2 with

π−1(a) := (a,−b)

2The notation π−1(a) means that we have picked an inverse image of a under π. However, the
map π is usually not invertible, and choices were made to produce this inverse image. In short,
π−1 is not a map.
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we can compute

π(π−1(a)) =π(a,−b) = a

d cone(π−1(a)) =dcone(a,−b) = 0

Therefore, ker( f : H k (A[1]) → H k+1(B)) ⊂ Im (π : H k (cone( f )) → H k (A[1]).

The other direction is that ker( f : H k (A[1]) → H k+1(B)) ⊃ Im (π : H k (cone( f )) →
H k (A[1]). To show this, we need to show that the composition of f ◦π = 0 on
cohomology. Let [(a,b)] ∈ H k (cone( f )) be any element of homology. Since this is
an element of homology, dcone(a,b) = 0, and in particular,

f (a) =−dB b.

We can use this when computing:

f ◦π[(a,b)] = f [(a)] = [−dB b] = [0].

We omit the arguments for showing exactness at the other portions of the se-

quence. ∂2

This is sometimes notated in the following way:

· · · H n(cone( f )) H n(A[1])

H n+1(B) H n+1(cone( f )) H n+1(A[1])

H n+2(B) H n+2(cone( f )) · · ·

i π

f
i π

f
i π

There is a useful corollary that follows from this construction:

34 Corollary

2-out of 3

Suppose that A•,B• are exact, and let f • : A• → B• be any map. Then cone•( f ) is
exact.

Proof: By assumption H k (A) = H k (B) = 0 for all k. Therefore, we have the long
exact sequence

· · · H n(cone( f )) 0

0 H n+1(cone( f )) 0

0 H n+2(cone( f )) · · ·

i π

f
i π

f
i π

from which it follows that H k (cone( f )) = 0 for all k. Therefore cone•( f ) is exact.
∂2
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35 Inclusion-Exclusion
Let X be a set with a decomposition into smaller subsets, X = ⋃

i∈I Ui . Let UJ = ∩ j∈JUi .

There exists an exact chain complex C R•(U ) with C R•(U ) =⊕
J⊂I ,|J |=k F (UJ ).

We will prove this theorem by using the tools of homological algebra, and induct on the
size of I .

Definition.Let U = {Ui }i∈I be a collection of subsets which cover X . Denote by U∩ := {U j }

A covering U = {Ui } of X is a collection of subsets Ui ⊂ X so that

X = ⋃
i∈I

Ui .

To each covering of X we will create an resolution complex C R•(U ).

Definition.Let U = {Ui }i∈I be a covering of X . For each J ⊂ I , define the subset UJ :=
X ∩ (

⋂
i∈J Ui ). Suppose that J and K differ by a single index. We will then write J lK .

Notice that whenever K m J we have an inclusion map iKmJ : UK →UJ , and therefore we
get an associated map

i∗KmJ : F (UJ ) →F (UK ).

We define the chain groups

C Rk (U ) := ⊕
K⊂I ,|K |=k

F (UK )

and define the differential map to be

d k
C R := ⊕

KmJ
i∗KmJ .



We will show that this gives us a chain complex by constructing it in a different fashion.

Lemma.Let Û1 be the elements of X which only belong to U1, Let UX = {Ui }i∈I be a cover
of X . Let U∩ = {Ui ∩U1}1 6=i∈I be a cover for U1 \ Â1. Let U\ = {Ui }1 6=i∈I be a cover for
X \Û1. Then there is a natural maps i J :

⋂
i∈J (Ui ∩U1) →⋂

i∈J (U )i ) for each J , inducing a
map

i∗ : C R•(U\) →C R•(U∩)

and C R•(UX ) = cone(i∗)⊕ (F (Û1) →F (Û1)

As always, a diagram explains the core concept of this proof:

A12 A1

⊕ ⊕

A123 A13 A2 X

⊕ ⊕

A23 A3

C R•(U∩⊕ A1)

C R•(U∪⊕ A1)

Corollary.The homology of the resolution complexes are trivial: H•(C R•(U )) = 0, i.e.
C R•(U ) is exact.

Proof: We again prove by induction on the size of the cover. As a base case, we can let
U = {X }, then H•(U ) = 0 trivially.
Now assume that we know by induction that C R•(U∩) and C R•(U∪) have trivial homology.

Since the cone of exact chain complexes is exact, we get C R•(U ) is exact. ∂2



Mayer Vietoris
We finally return to one of the core concepts of this course: given a decomposition
of a space X = A ∪B , what can we tell about the topology of X in terms of the
topology of A and B?

5

At the start of the course, we alluded that we would like an algorithm to compute
the number of connected components via an inclusion-exclusion principle on
a decomposition of X into smaller topological spaces. Let’s look at an example
where this works, and an example that shows that our theory requires some more
depth.

X

A

B

A∪B

36Example Let S1 = A∪B as drawn in the figure. Let’s try to
compute the number of connected components
of S1 using this decomposition. A ∩B has two
connected components, so we would have that

b0(A)+b0(B)−b0(A∩B) = 0

which means that we cannot use the principle
of inclusion-exclusion to compute the number
of connected components of the circle. The ob-
struction in this case to the principle of inclusion-
exclusion working is the presence of nontrivial
homology in H 1(S1).

While we cannot use the principle of inclusion-exclusion to compute the number
connected components, we can get an inclusion-exclusion like principle to work
homologically. For full details on how to generalize inclusion-exclusion like
principles to general settings, see Appendix ??.

37Theorem

Mayer-Vietoris

Let A,B , X be topological spaces. Let

j A : A →X

jB : B →X

be two inclusions of topological spaces so that A∪B = X . Let A∩B be the common
intersection of A and B in X , with the natural inclusions

i A : A∩B →A

iB : A∩B →B
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Then there is a short exact sequence of chain complexes

C •(A)

0 C •(X ) ⊕ C •(A∩B) 0

C •(B)

i∗Aj∗A

j∗B −i∗B

This in turn gives us a long exact sequence on homology from Lemma ??.

· · ·→ H k−1(A∩B) → H k (X ) → H k (A)⊕H k (B) → H k (A∩B) → H k+1(X ) →···

Proof: To show that this is an exact sequence, we need to check that the chain
maps form exact sequences of vector spaces at each grading k:

0 C k (X ) C k (A)⊕C k (B) C k (A∩B) 0.
j∗A⊕ j∗B i∗A⊕(−i∗B )

Let’s start by checking exactness at the first position of the sequence.

0 C k (X ) C k (A)⊕C k (B)
j∗A⊕ j∗B

The statement of exactness at this point is that ker( j∗A ⊕ j∗B ) = 0, or that the map
is injective. Recall that Ck (X ),Ck (A) and Ck (B) are continuous Z2 labellings of
the k-intersections of the covering sets Ui . Given Uσ ⊂ X a k-fold intersection of
open sets, it is either the case that Uσ ⊂ A or Uσ ⊂ B . As a result, given φ ∈C •(X ),
the labelling of Uσ can be determined by its image under the map j∗A or j∗B . This
means that the labelling φ can be recovered from ( j∗A ⊕ j∗B )(φ), so ( j∗A ⊕ j∗B ) is
injective.

At the last position of the sequence,

C k (A)⊕C k (B) C k (A∩B) 0.
i∗A⊕(−i∗B )

exactness means that Im i∗A ⊕ i∗BB = C k (X ) i.e. i∗A ⊕ i∗B is surjective. In fact, i∗A
is already surjective, as Uσ ⊂ A ∩B is contained in Uσ ⊂ A, and therefore every
labelling of an open set in C k (A ∩B) can be lifted to a labelling of open sets in
C k (A) and extended by zero over C k (B).

The remaining tricky part of the argument is on the middle section,

C k (X ) C k (A)⊕C k (B) C k (A∩B)
j∗A⊕ j∗B i∗A⊕(−i∗B )

Here, the statement is that ker(i∗A ⊕ (−i∗B )) = Im ( j∗A ⊕ j∗B ). The kernel of the map
( j A ⊕ (− jB )) consists exactly of labellings of the k-fold intersections on A and B
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which agree on the intersection. These are exactly the labellings which are in the
image of j∗A ⊕ j∗B .

Once we know that the short sequence of chain complexes is exact, the long exact
sequence of homology groups

· · ·→ H k−1(A∩B) → H k (X ) → H k (A)⊕H k (B) → H k (A∩B) → H k+1(X ) →···

follows from the application of the Zig-Zag Lemma ( Station 6 .) ∂2

We usually represent the Mayer-Vietoris long exact sequence with the following
diagram of homology groups :

· · · H k (A)⊕H k (B) H k (A∩B)

H k (X ) H k+1(A)⊕H k+1(B) H k+1(A∩B)

H k+1(X ) H k+2(A)⊕H k+2(B) · · ·

j∗A⊕ j∗B i∗A⊕i∗B

δ
j∗A⊕ j∗B i∗A⊕i∗B

δ
j∗A⊕ j∗B i∗A⊕i∗B

The maps i∗ and j∗ somewhat act in a normal way: cycles in the spaces X , A,B
and A∩B are related to each other. We now will try to figure out what the map δ

does.

This requires a better geometric understanding of what each homology class
means. Each element of Ck (X ) represents a labelling of the k-simplices of X , and
the differential map “pushes” those labellings to the higher simplices.

A label represents a non-trivial class in H k (X ) if, when pushed to the higher
dimensional simplices it cancels out, and the labelling itself does not arise from a
lower-dimensional labelling.

Suppose that we have a labellingφ of the simplices of A∩B giving us a cohomology
class. This means that the “push” of the labelling on A∩B to the higher simplices
inside of A∩B will cancel out. Let us take φ some labelling of the k-simplices on
A∩B representing some cohomology class. Use this to create a labelling φA on A
and a labelling φB on B . Even though dA∩Bφ equals zero, the extended labellings
may not have this property, and so dAφA and dBφB are some interesting labellings
to talk about. They, in some sense, represent the “boundary” A ∩B inside of A
and B .

Let’s now use both dAφA and dBφB to create a labelling for all of X . We take
dAφA +dBφB as a labelling on all of X . This element is, surprisingly, closed.
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1

1
1

1
1

1

φ

0

0 0
0 0

0

dA∩Bφ

1

0

1
0

0
0 0

0

0
dBφB

0

00
0 0

0

1

1

dAφA

1

1
1

1
1

1

0

0

φB1

1
1

1
1

1 0

φA

1

0

1
0

00
0 0

0

1

1

dAφA +dBφB
0

0

dX (dAφA +dBφB )
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38 Homology of Sphere
Let's compute the homology of sphere Sn by using Mayer-Vietoris and induction. For this

example, we will start with the assumptions that we know the homology of a disk ??.

We will prove that H k (Sn) = Z2 if and only if k = n,0 by induction on n. Here, we will
run the Mayer-Vietoris argument on a the decomposition of Sn into two disks, A,B =
Dn , which are suppose to represent the upper and lower hemispheres. Notice that
the intersection of the two hemispheres is the equatorial sphere, which is a sphere of
1-dimension lower.

191figures/simp_spheredecomp.pdf

So, we have a short exact sequence of chain complexes:

0 →C •(Sn) →C •(Dn)⊕C •(Dn) →C•(Sn−1) → 0

This short exact sequence gives us a long exact sequence of homology groups :

H 0(Sn) H 0(Dn)⊕H 0(Dn) H 0(Sn−1)

H 1(Sn) H 1(Dn)⊕H 1(Dn) H 1(Sn−1)

H 2(Sn) · · · H n−2(Sn−1)

H n−1(Sn) H n−1(Dn)⊕H n−1(Dn) H n−1(Sn−1)

H n(Sn) H n(Dn)⊕H n(Dn) H n(Sn−1) 0

δ

δ

δ

δ
i0⊕ j0



Substituting in the groups we know from induction and our assumptions

H 0(Sn) Z2 ⊕Z2 Z2

H 1(Sn) 0 0

H 2(Sn) · · · 0

H n−1(Sn) 0 Z2

H n(Sn) 0 0 0

δ

δ

δ

δ
i0⊕ j0

We therefore may now look at these shorter exact sequences instead:

0 →Z2 → H n(Sn) → 0

0 → H k (Sn) → 0 k 6= n,0

0 → H 0(Sn) → Z2 ⊕Z2 → Z2 → H 1(Sn) → 0

Running through the properties of exactness at each part shows confirms our computa-

tion of the homology of Sn .



Inclusion-Exclusion principles: The Zig-Zag Lemma
Let’s now use Inclusion-Exclusion to build up some more intuition on what
homological algebra can get us. We will now work a little abstractly.

6

Let C be a collection of objects. Let’s suppose that objects in this collection
admit decompositions, so that we may write 3

X = A∪B

and for every such decomposition, we may also associate an objects called A∩B .

A property is a function P : C →N which assigns to each object a number.

39Definition Let C be a category, and P : C → N be a property. We say that P obeys the
homological inclusion-exclusion principle if for all X , there exists a chain complex
P•(X ) satisfying the following conditions:

– Recovery of P: We have that dim H0(P•(X )) = P (X ).

– Inclusion-Exclusion: Whenever X = A∪B , we have a short exact sequence:

0 → P•(A∩B) → P•(A)⊕P•(B) → P•(X ) → 0.

Notice that satisfying a homological inclusion-exclusion principle is in a lot of
ways like satisfying a inclusion-exclusion principle, in that

dim(P0(X )) = dim(P0(A))+dim(P0(B))−dim(P0(A∩B)).

While we don’t get an actual inclusion exclusion principle from a homological
inclusion-exclusion principle, we get something very close to the principle hold-
ing. In order to see the relation between inclusion-exclusion and homological
inclusion-exclusion, we need a powerful lemma from homological algebra.

40Theorem

Zig-Zag Lemma

Let A•,∂A• , B•,d B• and C•,dC• be chain complexes. Given

0 A• B• C• 0
f g

a short exact sequence, there exists a unique map δ such that the following is a
long exact sequence on homology:

· · · Hn+1(C ) Hn(A) Hn(B) Hn(C ) Hn−1(A) · · ·g∗ δ f∗ g∗ δ f∗

3We also adopt homological grading conventions in this section, as opposed to cohomological
grading conditions.
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Before we get into a proof of this theorem, let’s quickly make a remark on the map
δ. On the one hand, the map is remarkable, as there is no reason to expect a map
connecting C → A. However, we’ve seen the existence of a long exact sequence
that arises from a short exact sequence before when we looked at cones.

Foo

In a certain sense, this theorem says that all short exact sequences of chain
complexes essentially arise from the cone sequence. While we will not be able to
prove this result in this class, one can make a version of this statement true by
exploring the derived category and triangulated structures.

Proof: First, let’s expand the original diagram:

...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

∂ ∂B ∂C

∂n+1

fn+1

∂B
n+1

gn+1

∂C
n+1

∂A
n

fn

∂B
n

gn

∂C
n

∂A
n−1

fn−1

∂B
n−1

gn−1

∂C
n−1

We want to construct a function δ from Hn(C ) to Hn−1(A). The following ar-
gument is an element chasing argument, which can be a bit difficult to follow
through; it’s suggested that the reader write out the argument step-by-step at
some point on their own to see where the maps come from.
Since this lemma contains several statements, we will check some of them and
leave the remainder as exercises.

41 ClaimThere exists a canonical map δ : Hk (C ) → Hk−1(A).

As mentioned before, we should somewhat expect the existence of this map from
our studies of cones. First, let’s try and show that to a homology class [γ] ∈ Hk (C ),
we can find an element in Ak−1

– As the map gn is surjective, we know that we can pick an element in the
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preimage β so that gn(β) = γ. Notice that this is not a canonical choice!

...
...

...

0 Ak+1 Bk+1 Ck+1 0

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

...
...

...

∂A
k+1

fk+1

∂B
k+1

gk+1

∂C
k+1

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

– We can apply ∂B
n (β) and we wind up with an element in Bn−1. Using that

gn−1 is a chain map, we get that

gn−1∂
B
n (β) = ∂C gn(β) = ∂Cγ= 0

where the second equality comes from the fact thatγ represents a homology
class.

...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

∂A
n+1

fn+1

∂B
n+1

gn+1

∂C
n+1

∂A
n

fn

∂B
n

gn

∂C
n

∂A
n−1

fn−1

∂B
n−1

gn−1

∂C
n−1

– Since ∂B
n (β) ∈ ker gn−1, and the sequence is chain complexes is exact, we

know that ∂B
( β) ∈ Im fn−1. Since fn−1 is injective, we know that there is
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unique α corresponding to this β so that fn−1(α) = ∂B (β).

...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

∂A
n+1

fn+1

∂B
n+1

gn+1

∂C
n+1

∂A
n

fn

∂B
n

gn

∂C
n

∂A
n−1

fn−1

∂B
n−1

gn−1

∂C
n−1

– We initially define δ[γ] =α.

We now need to show that α is a homology class, that is, that ∂A
k−1(α) = 0.

– Look at ∂A
k−1(α). Since this diagram is commutative, we have that fk−2∂

A
k−1(α) =

∂B
k−1 fk−1(α).

...
...

...

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

0 Ak−2 Bk−2 Ck−2 0

...
...

...

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

∂A
k−2

fk−2

∂B
k−2

gk−2

∂C
k−2

– Recalling or definition of α, we know that fk−1(α) = ∂B
k (β), so ∂B

k−1(∂B
k (β) =
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fk−2(∂k−1α) = 0. Since fk−2 is injective, we get that ∂k−1α) = 0.

...
...

...

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

0 Ak−2 Bk−2 Ck−2 0

...
...

...

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

∂A
k−2

fk−2

∂B
k−2

gk−2

∂C
k−2

Finally, when we constructed the class α, we had to make a choice of β= g−1
k (γ).

Let’s show that the homology class of α does not depend on the choice of β lifting
α.

– Suppose that β,β′ are two different liftings of γ so that gk (β)− gk (β′) = 0.
We want to show that the associated classes [α], [α′] are homologous. Since
gk (β−β′) = 0, there exists a class f −1

k (β−β′) due to exactness of the row.

...
...

...

0 Ak+1 Bk+1 Ck+1 0

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

...
...

...

∂A
k+1

fk+1

∂B
k+1

gk+1

∂C
k+1

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

– Due to commutativity of the highlighted square, we have that fk−1∂
A
k ( f −1

k (β−
β′) = ∂B

k (β−β′) = fk−1(α−α′). Due to the injectivity of fk−1, we conclude
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that α−α′ = ∂A
k ( f −1

k (β−β′), so these two classes are cohomologous.

...
...

...

0 Ak+1 Bk+1 Ck+1 0

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

...
...

...

∂A
k+1

fk+1

∂B
k+1

gk+1

∂C
k+1

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

This completes the proof that the map δ is well defined on homology. Now we
will show some of the exactness statements.

42 ClaimThe sequence of homology groups

Hk (B)
gk−→ Hk (C )

δk−→ Hk−1(A)

is exact.

In order to prove this claim, we need to show that ker(δ) ⊂ Im (gk ), and Im (gk ) ⊂
kerδ.

– To show that Im (gk ) ⊂ kerδ, it suffices to show that the composition δk ◦
gk = 0. Let [β] ∈ Hk (B) be a homology class. Then [δk gk (β)] = [ f −1

k−1(∂B
kβ)].

Since [β] is a class in homology, the boundary map starts by computing
∂B

kβ= 0, and we conclude that δk (gk (β)) = 0.

– To show that the ker(δk ) ⊂ Im (gk ), let γ be an element so that δk [γ] = 0.
Since the map gk : Bk → Ck is surjective, we might hope that β = g−1

k γ,
a choice of lift of γ, is a class in homology. So we need to show that
∂B

k (β) = 0. By commutativity of the lower right square, we have that ∂B
k (β) =
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fk−1(δ(γ)) = 0.

...
...

...

0 Ak+1 Bk+1 Ck+1 0

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

...
...

...

∂A
k+1

fk+1

∂B
k+1

gk+1

∂C
k+1

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

43Claim The sequence of homology groups

Hk+1(C )
δk+1−−−→ Hk (A)

fk−→ Hk (B)

is exact.

∂2
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Chain Homotopy
Homological algebra is ultimately the study of which chain complexes are iso-
morphic to each other in a homological way

7

44 Definition

Quasi-

isomorphism

Let f : A• → B• be a chain map. Then we say that f is a quasi-isomorphism if the
induced map on homology, f∗ : Hi (A ) → Hi (B) are isomorphisms of homology
groups.

Notice that while every isomorphism which is a chain map gives us a quasi-
isomorphism, a chain map need not be an isomorphism to be a quasi-isomorphism.

45 Example

Non-isomorphic,

but

quasi-isomorphic

Not isomorphic, but quasi-isomorphic.

Similarly, even if (A,∂) and (B ,∂) have isomorphic homology groups, they need to
not be quasi-isomorphic.

46 ExampleIt is not necessarily the case that if two chain complexes have isomorphic homol-
ogy that those two complexes are quasi isomorphic.

Even though f• : A• → B• is a quasi-isomorphism, there is no guarantee that there
exists g• : B• → A• so that the maps (g ◦ f )k : Hk (A) → Hk (A) is the identity. In
other words, there is no need for inverses to exists to quasi-isomorphism on either
the chain or homological level. If such a map exists, we call it a quasi-inverse.

47 Example

Non-inverticble

quasi-

isomorphism

Chain Complexes with no quasi-inverse.

It is usually hard come up with an interpretation of where a quasi-isomorphism
comes from; in general the question if two maps f , g : A• → B• do the same thing
on homology is hard to get some intuition on. As a proxy to showing that two
maps have the same definition on homology, we introduce an idea from topology:
that of a homotopy.
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48Definition

Chain Homotopy

Let (A,∂A) and (B ,∂B ) be chain complexes. Let f• : A• → B• and g• : A• → B• be
chain maps. Then we say that f is chain homotopic to g if there exists a series of
maps (called a chain homotopy) hi : Ai → Bi+1 such that

f − g = ∂B hi +hi−1∂
A

We write that f ∼ g .

Here’s a diagram that helps visualize the maps involved in a chain homotopy.

· · · Ai+1 Ai Ai−1 · · ·

· · · Bi+1 Bi Bi−1 · · ·

∂A

fghi+1

∂A

fghi

∂A

fghi−1

∂A

hi−2

∂B ∂B ∂B ∂B

It can be difficult to get an intuition on what a chain homotopy between two
map constitutes. One interpretation comes from topology; for every element x,
the difference between f (x) and g (x) can be expressed as a cylinder connecting
f (x), g (x). This bears resemblance to the definition of a homotopy between two
maps in point-set topology.

49Example An example of a chain homotopy will go here!

One thing worth pointing out is that we don’t have any condition of compatibility
with the differential for the homotopy maps hk : Ak → Bk+1; they are allowed to
be as crazy as need be. Chain homotopy is especially useful for the following
lemma:

50Lemma

Homotopic maps

agree on

homology

Suppose that f•, g• : A• → B• are chain homotopic chain maps. Then they are the
same map on homology, in the sense that

fk [x] = gk [x]

for every [x] ∈ Hk (A).

Proof: What we want to show is that fk − gk = ∂B
k+1hk +hk−1∂

A
k , then for every

[a] ∈ Hk (A), there exists b ∈Ck+1(B) with

fk (a)− gk (a) = ∂k+1(b).

88



The homotopy gives us a natural for b is; we can let b = hk (a). Taking our defini-
tion of homotopy shows

fk (a)− gk (a) =∂B
k+1hk (a)+hk−1∂

A
k (a)

As a represents a class in homology

=∂B
k+1hk (a) = ∂B

k+1(b).

∂2

This next claim shows the usefulness of chain homotopies:

51 Lemma

Homotopic to

Identity

Let f : A → B and g : B → A be chain maps. Suppose that g ◦ f ∼ 1A and
g ◦ f ∼ 1B . Then f and g are quasi-isomorphisms.

Proof: Let’s start with a diagram.

]

· · · Ai+1 Ai Ai−1 · · ·

· · · Bi+1 Bi Bi−1 · · ·

· · · Ai+1 Ai Ai−1 · · ·

d ′ d

h
f

d

f
h

f

d

h
d ′ d ′

g

d ′

g g

d ′

d ′ d d d

The homotopy to the identity map gives us that there exists h such that g ◦
f −1A = dhi +hi−1d . Suppose that v ∈ Hi A. Then v is in the kernel of d , so
hi−1d(v) = hi−1(0) = 0. We have that therefore g ◦ f −1A ∈ Im (d), which is to say
that on homology g ◦ f = 1A , as we mod out by Im (d) when we take homology.

Of course, a similar proof shows that f ◦ g = 1A
∂2



ExercisesP

The zero vector space, 0, is the vector space which only has one element in it.

P15Exercise Let V1 and V2 be vector spaces. Suppose that f : V1 → V2 is a linear map. Show
that ker( f ) = {0} if and only if the map f : V1 →V2 is injective.

P16Exercise Suppose we have 5 vectors spaces and maps between them.

V 0 V 1 V 2 V 3 V 4d 0 d 1 d 2 d 3

and suppose that Im d i = kerd i+1 for each i .

– Show that V 0 = 0, then d 1 is injective.

0 V 1 V 2d 0 d 1

– Show that if V 4 = 0, then d 2 is surjective.

V 2 V 3 0d 2 d 3

– Show that if V 0 =V 3 = 0, then d 1 : V 1 →V 2 is an isomorphism.

0 V 1 V 2 0d 0 d 1 d 2

– Show that if V 0 =V 4 = 0, then dim(V 1)+dim(V 3) = dim(V 2).

0 V 1 V 2 V 3 0d 0 d 1 d 2 d 3

– Furthermore, show that there is a non-canonical isomorphism of vector
spaces, V 2 =V 1 ⊕V 3.



P17 Exercise

Translating Sets

in to Vector

Spaces

Let A be any finite set. Let F (A) be the set of functions φ : A →Z2.

– Prove that there are 2|A| such functions.

– Prove that F (A) is a Z2 vector space.

– Prove that dim(F (A)) = |A|.

P18 Exercise

Categories and

Functors

Show that if f : A → B and g : B →C are two maps of sets, then

(g ◦ f )∗ = f ∗ ◦ g∗,

i.e. the pullback relation preserves compositions.

P19 ExerciseLet S1,S2 ⊂ A be two subsets as before.

S1

S1 ∩S2 ⊕ A

S2

A2 A1 A0

i∗1 j∗1

j∗2i∗2

i∗ j∗

Prove that the map i∗ is surjective.

P20 Exercise

Open Ended

Exercise

Suppose that S1,S2 and S3 are three sets, and A = S1 ∪S2 ∪S3. Describe how
one would extend the Inclusion-Exclusion formula to this setting using the linear
algebra machinery that we set up before.



P21Exercise Let U ⊂V be a subspace of a vector space. Consider the equivalence relation

v1 ∼U v2 if and only if v1 − v2 ∈U .

Show that the quotient space V /U := {[v]∼U } given by the set of equivalence
classes is a vector space.

P22Exercise Let U ⊂V be a subspace of a vector space. Construct an exact chain complex

0 →U →V →V /U → 0

P23Exercise Let G be a graph – a simplicial complex with only 0 and 1 dimensional simplices.
The spaces C 0(G ,Z2) and C 1(G ,Z2) have basis given by the vertices and edges of
the graph. Describe d 0 as a matrix in terms of this basis.

P24Exercise Show that whenever e1, . . . ,ek sequence of edges with k odd which form a cycle in
G , then one of e1+. . .+ek ∈C 1(G ,Z2) is not in the image of d 0. Make a similar con-
clusion for when k is even. Conclude that if G has a cycle, H 1(G) := H 1(C •(G ,Z2))
is at least 1-dimensional.

P25Exercise Show that H 0(G) is one fewer than the number of connected components in G .

P26Exercise Show that H 1(G) = 0 if and only if G is a tree.



P27 ExerciseSuppose that G has one connected component. Compute the dimension of H 1(G)
in terms of the number of edges and vertices of G .

P28 ExerciseLet S2 be the simplicial complex defined by the tetrahedron (do not include the
interior 3-simplex, but only the 4 faces.) Show that H 0(S2) = 0, H 2(S2) =Z2 and
H 1(S2) = 0.

P29 ExerciseLet C i (X ,Z2) be the cochain complex associated to a simplicial space. Show that
if X has only one connected component then H 0(Z2) = 0.

In class, we looked at one configuration of open sets which covered the circle.
We will look at some examples where we use multiple sets to cover a topological
space.

P30 ExerciseLet X be the line segment drawn below, covered by two sets U1 and U2. Repeat
the connected component construction for the line covered with two sets.

U1

U2

Show that the map i∗ : C 1(X ) →C 2(X ) is surjective, and so

dim(C 2(X ))−dim( Im (i∗)) = dim(ker(0C 2(X )→0))−dim( Im (i∗)) = 0.



P31Exercise Let X be the line segment, covered with n open intervals which overlap as in the
diagram below:

U1 U3U2 Un
· · ·

Define a sequence

C 0(X )
j∗−→C 1(X )

i∗−→C 2(X )

where C 1(X ) is based on the connected components of the Ui , and the C 2(X ) is
based on the intersections Ui ∩Ui+1. Again, show that

dim(C 2(X ))−dim( Im (i∗)) = dim(ker(0C 2(X )→0))−dim( Im (i∗)) = 0.

P32Exercise Let X be the circle, covered with n intervals which overlap end to end as drawn
below.

U1

U2U3

U4

· · · Un

Define C 1(X ) and C 2(X ) as in the previous problem.

– Pick a basis for C 1(X ) and C 2(X ) given by functions which map a single
connected component to 1, and all other components to zero. Write down
the map i∗ in this basis.

– Show that for this cycle,

dim(C 2(X ))−dim( Im (i∗)) = dim(ker(0C 2(X )→0))−dim( Im (i∗)) =−1.



P33 ExerciseCover this figure eight with sets so that

– Each set is connected

– Each pair of sets intersect in one connected component

– No three sets have common overlap.

Define a sequence

C 0(X )
j∗−→C 1(X )

i∗−→C 2(X )

where C 1(X ) is based on the connected components of the Ui , and the C 2(X ) is
based on intersection on the intersections Ui ∩Uk . Then compute

dim( Im (i∗))−dim(C 2(X )).

P34 ExerciseLet A• be a chain complex, and let B k := H k (A) be the chain complex whose
cochain groups are given by the cohomology groups H k (A) and whose differential
is always zero. Verify that π : A• → B• which sends each element of A to its
cohomology class is a cochain map, and π : H k (A•) → H k (B•) is an isomorphism.

P35 ExerciseLet X = (∆X ,SX ) be a simplicial complex. A simplicial subcomplex is a simplicial
complex Y = (∆Y ,SY ) with SY ⊂SX and

σ ∈∆Y ⇒σ ∈∆X .

Show that if Y is a subcomplex of X , there is a cochain map

i∗ : C •(X ,Z2) →C •(Y ,Z2).



P36Exercise Let Y ⊂ X be a simplicial subcomplex. Denote the corresponding map of topolog-
ical spaces i : Y → X . Construct a new simplicial complex, cone(i ) whose vertex
set is

Scone :=S ∪ {x},

and whose simplifies are:

∆cone :=∆X ∪ {σ∪ {x} |σ ∈∆Y }.

Draw a picture for cone(i ) when X is an interval, and Y is the two boundary
vertices of the interval. Furthermore, explain why this operation is called the
cone.

P37Exercise Let i∗ : C •(X ,Z2) →C •(Y ,Z2) be the map considered above. Prove that

C •(cone(i ),Z2) = cone•(i∗)[−1]

P38Exercise The n-disk (denoted Dn) is the simplicial complex where SDk := {0, . . . ,n} and

∆Dn = {σ |σ⊂SDn }.

Let idDn : Dn → Dn be the inclusion of Dk into itself as a subcomplex. Show that

cone(idDn ) = Dn+1.

When X is a simplicial complex, we denote by H i (X ,Z2) to be the i -th cohomol-
ogy group of C •(X ,Z2).

P39Exercise Use the previous characterization of Dn+1 to compute the homology groups
H i (Dk ) inductively.



P40 ExerciseThe n-sphere (denoted Sn) is the simplicial complex where SSn = {0, . . . ,n +1}
and

∆Sn = {σ |σ⊂SSn ,σ 6= {0, . . . ,n +1}.

Show that there is a map iSn : Sn → Dn+1, and that

cone(iSn ) = Sn+1.

P41 ExerciseUse the previous characterization of Sn+1 to compute the cohomology groups
H i (Sn) inductively.


