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Vector Spaces, Sets, and Diagrams
Before we start with the development of homological algebra, it is a good idea to
set up some common conventions and diagrams for simplifying linear algebra.

1

These are some class notes! Please lets me if you know see any errors. Here we
will flesh these methods out in more detail before developing chain complexes.

1 Definition

Direct Sum

Let V1 and V2 be vector spaces. The direct sum of V1 and V2 is the vector space of
pairs of vectors, and is denoted

V1 ⊕V2 := {(v1, v2) | v1 ∈V1, v2 ∈V2}.

The vector addition on V1 ⊕V2 is done component wise,

(v1, v2)+ (w1, w2) = (v1 +w1, v2 +w2).

The scalar multiplication acts on all components simultaneously,

λ · (v1, v2) = (λ · v1,λ · v2).

2 Example

Real n
dimensional

space

The set of n-tuples of real numbers is usually denoted Rn . Another way of
presenting this vector space is

Rn =R⊕R⊕·· ·⊕R⊕R︸ ︷︷ ︸
n

where now each “vector” ri ∈ R1
i is a scalar.

The direct sum operation is commutative, in that the vector spaces V1 ⊕V2 is iso-
morphic to V2 ⊕V1. Additionally, the direct sum of vector spaces is an associative
operation so that the vector spaces (V1 ⊕V2)⊕V3 is isomorphic to V1 ⊕ (V2 ⊕V3).
If this looks suspiciously like addition on the integers to you, you’re picking up on
an intertwining between these two operations via dimension:

dim(V1 ⊕V2) = dim(V1)+dim(V2.)
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3Example The rank nullity theorem can be restated as: If f : V →W is a linear map, then

V ' ker f ⊕ Im f .

Given vector spaces V1,V2,W , and maps f1 : V1 →W , f2 : V2 →W , one can create
a new map from V1⊕V2 →W , which is defined by taking the sum of the two maps:

f1 ⊕ f2 : V1 ⊕V2 →W

(v1, v2) 7→ f1(v1)+ f2(v2).

We will frequently represent this composition either diagrammatically or using
matrices. This is a useful shorthand, and we will use it throughout this section on
chain complexes.

V1

⊕ W

V2

f1

f2

(
f1 f2

) ·(v1

v2

)
= (

f1(v1)+ f2(v2)
)

.

There is nothing that limits us to taking the direct sum of more than one map
along the domain.

4Definition

Sum across

common target

Let fi : Vi → W be a collection of maps. Then define
⊕k

i=1 fi :
⊕k

i=1 Vi → W be
the map defined on tuples by

(⊕
fi

)
(v1, . . . , vk ) =

k∑
i=1

fi (vi ).

Just as we can take the sum along the domains of maps, we are also allowed to
take sums along the targets of the maps. Let g1 : V →W1 and g2 : V →W2 be two
linear maps. Then denote the direct sum along the target

g1 ⊕ g2 : V →W1 ⊕W2

v 7→(g1(v), g2(v).)
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Just as we did for direct sum along the domain, we can represent these maps
diagrammatically or with matrices.

W1

V ⊕

W2

g1

g2

(
g1

g2

)
· (v

)= (
g1(v1)
g2(v2)

)
.

We can quickly do this with many targets at the same time.

5 Definition

Sum across

common domain

Let gi : V →Wi be a collection of linear maps. Define their direct sum to be

k⊕
i=1

gi : V →
k⊕

i=1
Wi

v 7→(g1(v), g2(v) · · · , gk (v)).

By combining both processes, we can create maps from many domains and
targets simultaneously.

6 Definition

Sum across

domains and

targets

Let fi j : Vi →W j be a collection of linear maps. Define their direct sum to be

⊕
i , j

fi j :
m⊕

i=1
Vi →

n⊕
j=1

W j

(v1, . . . , vm) 7→
(

m∑
i=1

fi ,1(vi ),
m∑

i=1
fi ,2(vi ), . . . ,

m∑
i=1

fi ,n−1(vi ),
m∑

i=1
fi ,n(vi )

)
.

We again have diagrammatic and matrix notations for these maps.

V1 W1

⊕ ⊕
V2 W2

(
f11 f21

f12 f22

)(
v1

v2

)
=

(
f11(v1)+ f21(v2)
f12(v1)+ f22(v2)

)
.
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7 Inclusion- Exclusion with 2 sets
Suppose that we have a decomposition A = S1∪S2. Then the sizes of these sets are related

by the inclusion-exclusion formula: 0 = |A|− ((|S1|+ |S2|))+|S1 ∩S2|.

We will first translate the sets A,S1,S2 and S1 ∩S2 into vector spaces. We take a slightly
different approach than before. To each set U , let F (U ) := hom(U ,Z2). Note that F (U ) ∼=
U , the Z2 vector space whose basis is given by U , but not canonically isomorphic. The
advantage with working with the vector space F (U ) is that it is canonically defined (i.e.
doesn’t come with a preferred basis.) Each element φ ∈ F (U ) can be thought of as an
assignments of 0’s and 1’s to the elements of U .

A slightly confusing feature of working with this vector space is that functions between
sets translate into functions going the other direction on the vector spaces,

f : U →V

F (U ) ←F (V ) : f ∗.

The map f ∗ is called the pullback map, and it is defined via precomposition. Given an
element φ ∈F (V ), the pullback along f is the map (φ◦ f ) ∈F (U ). I find the clearest way
to think about this is interpret F (V ) as the space of measurements on V . Then a function
f : U → V yields for each measurement φ : V → Z2 a new measurement f ∗(φ) on the
space U . The way this measurement f ∗(φ) works is by taking elements u ∈U , sending
them to V , and then performing the measurement φ there:

f ∗(φ)(u) :=φ( f (u)).

Remark.The function F : Sets → Vect turns problems about sets into problems of vector
spaces. This function is an example of a functor. Because F reverses the directions of
functions, we call this a contravariant functor. The general theory of functors belongs to
a branch of mathematics called category theory, which studies mathematics from the
perspective of general properties of functions.

An important feature of the functor F is that it exchanges cardinality with dimension:

|U | = dim(F (U )).

Let’s return to the setting of inclusion-exclusion. Suppose that we have a decomposition
A = S1 ∪S2. We can encode this decomposition in the following maps between sets:

S1 ∩S2 S1

S2 A

i1

i2 j1

j2

F (S1 ∩S2) F (S1)

F (S2) F (A)

i∗1
i∗2 j∗1

j∗2

.



Theorem.Let A0 = F (A), A1 = (F (S1)⊕F (S2)) and A2 = F (S1 ∩ S2). Let i∗ := i∗1 ⊕ i∗2 :
A1 → A2, and let j∗ := j∗1 ⊕ j∗2 : A0 → A1 as drawn below:

F (S1)

F (S1 ∩S2) ⊕ F (A)

F (S2)

A2 A1 A0

i∗1 j∗1

j∗2i∗2

i∗ j∗

The map j∗ is an inclusion, the map i∗ is surjective, and ker(i∗) = Im ( j∗).

Proof: We show that the map j∗ is an inclusion. Let φ ∈F (A) be a non-zero element, and
let a ∈ A be the element so that φ(a) = 1. Since A = S1 ∪S2, there is an element b ∈ S1

or b ∈ S2 so that j1(b) = a or j2(b) = a. Without loss of generality, suppose b ∈ S1. We
can then compute that j∗(φ) = (φ◦ j1,φ◦ j2) and φ◦ j1(b) 6= 0. This proves that j∗(φ) is
nonzero, so the map j∗ has trivial kernel and is therefore injective. A similar proof shows
that i∗ is surjective.

We now show that ker(i∗) = Im ( j∗). For any element a ∈ S1 ∩S2, we note that

(i∗ ◦ j∗(φ))(a) =φ(( j1 ◦ i1)(a))+φ(( j2 ◦ i2)(a))

Since ( j1 ◦ i1)(a) = ( j2 ◦ i2)(a),

=2φ( j1 ◦ i1(a)) = 0

This shows that Im ( j∗) ⊂ ker(i∗). The reverse inclusion is by a similar argument. ∂2

We can now prove Inclusion-Exclusion for two sets. We will instead show that dim A0 −
dim A1 +dim A2 = 0 using two applications of the rank-nullity theorem.

dim A0 −dim A1 +dim A2 =(dimker( j∗)+dim Im ( j∗))− (dimker(i∗)+dim Im (i∗))+dim A2

As the map j∗ is injective and i∗ is surjective

=(0+dim Im ( j∗))− (dimker(i∗)+dim Im (i∗))+dim Im (i∗))

=dim Im ( j∗)−dimker(i∗)

=0.



Connected Components, and Toplogy
In this section we introduce some basic notions from topology which will motivate
some of our future discussions.

2

It’s beyond the scope of this course to define what a topological space is, and
the functions between those topological spaces. The main framework that we’ll
need is to know the following facts about topological spaces.

– Topological spaces are sets with some additional structure (called a topol-
ogy.)

– There are certain functions between these sets, called continuous functions,
which preserve the useful properties of the topology.

– The composition of continuous functions is again continuous.

– If X is a topological space, and Z2 is the topological space with two points,
then the set of continuous functions C 0(X ,Z2) is the a vector space. Fur-
thermore, dim(C 0(X ,Z2)) is the number of connected components of X .

These are the only properties of topological spaces which we will need to continue
this discussion.

8Example The basic example of a topological space is X :=R. The functions from f :R→R

which are continuous are exactly the continuous functions you know and love,
satisfying the property

lim
xi→x

f (xi ) = f (x).

This property is fondly phrased as “when you draw the graph of f (x), there are no
jumps in the graph. ”

Some more interesting examples of topological spaces are things like circles, tori,
disks, spheres, graphs.

Our intuition for continuous maps is that they are the functions between topo-
logical spaces which send nearby points to nearby points. We give a very brief
overview of some concepts from topology in Example 10 .

We define the connected component space of X to be the vector space

C 0(X ) := hom(X ,Z2)

8



of continuous functions from X to the two point set. One can think of this as
assigning a color to each connected component of the space X , and the num-
ber of colorings (determined by the dimension dimC 0(X )) tells you how many
connected components there are.

X

φ

Z2

9 Claim

Pullback Map

Given a continuous f : X → Y between topological spaces, there is a map

f ∗ : C 0(Y ) →C 0(X ).

Proof: The pullback function is defined as before:

f ∗ : C 0(Y ) →C 0(X )

φ 7→(φ◦ f )

The only thing to check is thatφ◦ f is a continuous map from X →Z2; this follows

from the composition of continuous maps being continuous. ∂2

What this claim means is that we can track how the connected components of
X are mapped to connected components of Y by using the pullback map. One
interpretation of this is that given a map f : X → Y , we can “color” the connected
components of X by the connected components of Y .

This framework should look very familiar– it is the same set-up that we used to
describe the number of elements in sets. The connected component space C 0(X )
turns questions about connected components into problems in linear algebra
instead. Let us take the annulus, and decompose it into two sets as drawn below.
This configuration does not respect an inclusion-exclusion like property in the
usual sense, in that U1,U2, X each have one connected component, but U1 ∩U2

has two connected components.

X

U1

U1 ∩U2

U2

=? -+

9



10 Topology 101
A topological space is a set, equipped with the additional data of open sets which deter-

mine which points on the topological space are close to each other. In this section, we give

a quick overview of point-set topology.

Definition.A topological space is a pair (X ,U ), where X is a set, and U is a specified
collection of subsets of X , called open sets satisfying the following axioms:

– The empty set and whole space X are open sets.

;, X ∈U

– Any union of open sets is an open set.

Uα ⊂U ⇒
( ⋃
α∈A

Uα

)
∈U .

– Any finite intersection of open sets is an open subset.

B ⊂U , |B | <∞⇒
( ⋂
β∈B

Uβ

)
∈U .

Open sets are kind of strange things. Roughly speaking, if x and y mutually belong to an
open set, then we know that they are close to each other in some sense, but unlike in the
metric space a topology doesn’t tell you how near two points are two each other. It just
tells you that there is something containing both of them. We still get some relative idea
of closeness– if two points mutually belong to many open sets, then we think of them
being closer to each other.
Let’s introduce a few examples of topologies.

Example (The Discrete Topology). Let X be a set. The discrete topology has every subset of
X as an open set:

U = {U |U ⊂ X }

This topology has too many open subsets, and all of the points are very far away from
each other!

A common example of a topological space comes from metric spaces. We’ll say that a U
is open if every point in x is contained within an open ball inside of U .



Example.Let (X ,ρ) be a metric space. Say that a set U is ρ-open if for every point x ∈U ,
there exists an open ball Bε(y) with

x ∈ Bε(y) ⊆U .

Then the collection of sets
U = {U ⊂ X |U is ρ-open}

makes (X ,U ) a topology. For example, on the real numbers every open interval is an
example of an open set with this topology.

The interesting maps between topological spaces are those which preserve the topological
structure.

Definition (Continuous Maps). Let f : X → Y be a function, and U ⊂ Y . The pre-image of Y
is all the elements of X which get mapped to U ,

f −1(U ) := {x ∈ X | f (x) ∈U }.

A function f : X → Y is continuous if and only if for every open set U ⊂ Y , the preimage

f −1(U ) ⊂ X

is an open set of X .

Suppose that f : X → Y and g : Y → Z are continuous maps. Then for any U ∈ Z ,
(g ◦ f )−1(U ) is again an open set, which shows that the composition of continuous maps
is continuous.

A topological space is called disconnected if X =U1tU2, with U1,U2 nonempty open sets.
The connected components of a topological space are the smallest nonempty open sets
{Ui } so that X =⊔k

i=1 Ui . We say that in this case that X has k-connected components.

Theorem.Suppose that X has k-connected components. Let hom(X ,Z2) denote the set
of linear maps from X to the space with two points. Then

dim(hom(X ,Z2)) = k.



Let’s see exactly how the argument from that worked in the proof that |X | −
(|U1|+ |U2|)+ (|U1 ∩U2|) = 0 fails when we now try to understand the number of
connected components. The spaces U1,U2, X all have one connected component,
so

C 0(X ) =C 0(U1) =C 0(U2) =Z2.

On the other hand, U1 ∩U2 has two connected components, so C 0(U1 ∩U2) =
Z2 ⊕Z2. We now look at the inclusions of topological spaces

U1 ∩U2 U1

U2 X

i1

i2 j1

j2

C 0(U1 ∩U2) C 0(U1)

C 0(U2) C 0(X )

i∗1
i∗2 j∗1

j∗2

Z2 ⊕Z2 Z2

Z2 Z2

i∗1
i∗2 j∗1

j∗2

.

We then condense this down into a sequence of vector spaces by defining C 1(X ) :=
C 0(U1)⊕C 0(U2), and C 2(X ) :=C 0(U1 ∩U2). Similarly, we define the maps

j∗ := j∗1 ⊕ j∗2 : C 0(X ) →C 1(X )

i∗ := i∗1 ⊕ i∗2 : C 1(X ) →C 2(X ).

as before to give us a sequence of vector spaces and maps between them.

C 0(X )
j∗−→C 1(X )

i∗−→C 2(X )

This entire set-up so far follows the same steps as the inclusion-exclusion set up
for sets. At this point, we deviate from that example.

11Claim For the maps and sets above, the map j∗ is injective and Im ( j∗) ⊂ ker(i∗).

Proof: Let φ : X →Z2 be any continuous function. Then j∗(φ) is ( j1)∗φ⊕ ( j2)∗φ,
where ( j1)∗φ : U1 →Z2 and ( j2)∗φ : U2 →Z2 are the restriction of φ to the subsets
U1,U2. Then

(i∗ ◦ j∗)φ= (i∗1 ◦ j∗1 )φ+ (i∗2 ◦ j∗2 )φ

Since i∗1 j∗1 = i∗2 j∗2 ,

= 2(i∗1 ◦ j∗1 )φ= 0.

This proves that i∗ ◦ j∗ = 0, which is equivalent to Im ( j∗) ⊂ ker(i∗). ∂2

This claim is weaker than the statement that we had for the complex involving
sizes of sets. That claim stated that Im ( j∗) = ker( j∗), instead of only having
an inclusion, and that i∗ was a surjection. The discrepancy between these two
statements – equality of image and kernel versus inclusion of image into kernel –
gives us an exact measurement of how the inclusion exclusion principle fails.
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Chain Complexes, Homology, and Chain Maps
Homological Algebra is a algebraic tool that we’ll return to at several points
throughout the course, and it makes sense to combine the general facts of the
theory in one place.

3

12 Definition

Cochain

complexes

A cochain complex is a sequence of vector spaces, . . .C−1,C 0,C 1 . . . and boundary
maps d n : C n →C n+1 with the condition that

d n+1 ◦d n = 0.

Frequently, we represent a chain complex with the following diagram of vector
spaces and maps:

· · · C 1 C 0 C−1 · · ·
d 1 d 0 d−1 d−2

We will usually denote the chain complex as (C •,d•), where C • is the sequence of
modules and d• the sequence of boundary maps. 1

Abelian

Categories

In principle, all of the tools that we are developing with cochain complexes can
be defined with rings and modules instead of just vector spaces. In fact, the field
of homological algebra generally works over any Abelian category, which is
a category equipped with the necessary structures to make linear algebra-like
constructions.

13 ExampleLet’s look at a first example of a chain complex. Let C 1 =C 2 =C 3 =R2, so that we
may represent our boundary maps by matrices. Consider the sequence of maps

0 R2 R2 R2 00

1 0

0 0

 0 0

0 1


0

This is an example of a chain complex, as the composition of the differential is
zero:

d 3 ◦d 2 =
(
0 0
0 1

)
·
(
1 0
0 0

)
=

(
0 0
0 0

)
.

The boundary squaring to zero is equivalent to the statement that the image of
the boundary map d k is in the kernel of the map d k+1.

13



The theory of cohomology was developed and inspired from techniques in topol-
ogy, but it is a very useful algebraic framework to have in mind. Abstractly, the
chain complexes and cohomology are a tool that explains the relations, and rela-
tions of relations, and higher meta-relations. For example, let V be a set with a
relation E ⊂V ×V on it. Let F (V ) and F (E) be the vector spaces given by maps
to the field of two elements. One might state the relationship now in terms of a
map d : F (V ) →F (E), where the image of a function φ : V →Z2 consists of all
relations E which have a member evaluating under φ.

However, the framework of homology allows us to put relations on the set of
relations, by introducing maps‘ F (E) →F (V ), and so on.

14Example ‘’ The example we considered in ?? is more than just a cochain complex; it
satisfies the stronger condition of being exact in that Im d k = kerd k+1. We’ll
explore exact complexes in more detail in the future.

15Example The examples considered in Station 2 of topological spaces covered with sets,
and the F (−) functor give another example of cochain complexes.

Before we study the general theory of cochain complexes, we would like to build
a combinatorial framework for describing topological spaces, which will give us
something concrete to stand on when we start describing cochain complexes in
this class. The natural extension of vertices, edges and faces are building blocks
called simplices.

16Definition

Geometric

Simplex

For k ≥ 0, a geometric k-simplex αk is the set of points in Rk+1 whose coordi-
nates are non-negative and sum to 1.

{(x1, x2, . . . , xk+1) | x1 +x2 +·· ·xk+1 = 1, xi ≥ 0}.

Given a simplex, we say that k is the dimension of αk .

14



17 ExampleWe’ve already seen a couple of geometric simplices before, and given them some
common names.

Dim Name Notes Graphical Representation

0 Vertex
By the above definition, it specif-
ically the point 1 ∈R1.

1 Edge

Drawn with the above notation,
it is the line segment in the first
quadrant. Notice that the re-
striction of the line to either axis
gives us a point.

0 Face

A 2-simplex is a (filled in) tri-
angle, filling the first quadrant.
Again, the restriction to either
the coordinate planes or axis
gives us edges and vertices re-
spectively.

Simplices have the property that their boundaries are created of smaller simplices.
For instance, a 2-simplex (triangle) has 3 boundary 1-simplices (edges.) A 3-
simplex (tetrahedron) has 4 boundary 1-simplices. In general a k-simplex has
k +1 boundary k −1-simplices, called facets.

A simplex has more than just k − 1 dimensional facets; it also has boundary
components of dimension k − l . Each boundary component is uniquely specified
by the k − l +1 corner vertices it uses. If we wanted to build more complicated
spaces by gluing together simplices, one would imagine that we would take these
simplices and join them together along boundary strata picked out by identifying
their vertices.

18 Example

A simplicial

complex

Here is an example of a topological space con-
structed from simplices. It uses 8 vertices, has 13
edges, 8 faces, and 1 3-simplex (the right simplex
is not filled in.) Notice that this topological space
doesn’t have a consistent notion of “dimension”–
the dimension varies from 1-3 dimensional de-
pending on which part of the complex you look
at.

In practice, it is simpler to build in this identification of simplices from the very
beginning.

15



19Definition

Abstract

Simplicial

Complex

A finite abstract simplicial complex is a pair X = (∆,S ) where

– S is a base set of vertices

– ∆⊂P (S) is a finite set of simplices

where the simplices are downward closed. This means that whenever σ ∈∆ and
τ⊂σ, then τ ∈∆. We say that σ ∈∆ is a k-simplex if |σ| = k+1. We will in this case
write that dim(σ) = k. If σ⊂ τ, and dimσ= dimτ−1, then we say that σ is a facet
of τ and write σlτ.

20Claim

Covers from

Simplices

Let X = (∆,S ). There is a collection of sets
{Us}s∈S so that

⋃
s∈S Us = X . Define for each

simplex σ ∈∆ the associated covering set

UI = X ∩⋂
s∈I

Us .

Furthermore, for every indexing set I , UI is con-
tractible, and is non-empty if and only if I = σ

for some simplex in our complex.

Note that for eachσlτ, there exists an inclusion
map iστ : Uτ→Uσ, and subsequently a map

i∗στ : hom(Uσ,Z2) → hom(Uτ,Z2).

We now define the reduced Cech cochain complex. For each i , let

C−1(X ,Z2) := hom(X ,Z2)

C i (X ,Z2) := ⊕
σ | dim(σ)=i

hom(Uσ,Z2).

Define the differential maps

d i : C i (X ,Z2) →C i+1(X ,Z2)

d i := ⊕
σlτ,dimσ=i

i∗στ.

16



21 Claim

Simplicial

Cochains are a

complex

C •(X ,Z2) with differential d i is a cochain complex. Furthermore, a basis of the C i

can be indexed by the i -dimensional simplices of X , and the differential defined
on a basis element eσ can be written as

d(eσ) = ∑
τ |σlτ

eτ.

It is rarely the case that this will be an example of an exact chain complex. The
difference between Im d i+1 and kerd i will be an interesting thing to measure.
Because we are loathsome to leave the land of vector spaces, we will measure this
difference with a new vector space.

22 Definition

Cohomology

Groups

Let (C ,∂•) be a chain complex. The cohomology of C • at n is defined to be the
module

H n(C ) = kerd n

Im d n−1

As the composition d n+1 ◦d n = 0, this is well defined.

For convenience, we will often call the kernel of d n the set of cocycles, and write
it Z n . The image of d n−1 is the set of coboundaries and will be written B n . Then
H n(C ) = Z n/B n . The names cycles and boundaries correspond to the geometric
interpretation of the homology as given above.

23 DefinitionWe say that a chain complex is bounded if there exists n such that C i = 0 if |i | ≥ n.

While it doesn’t make sense to ask about the dimension of a chain complex, there
is a generalization of dimension which applies to chain complexes.

24 Definition

χ of a complex

Let (C ,d) be a bounded cochain complex with each C i of finite dimension. Then
the Euler Characteristic of (C ,d) is the integer

χ(C ,d) :=
∞∑

k=−∞
(−1)k dim(C k ).

Notice that the Euler Characteristic has no dependence on the differential of a
chain complex. However, it is intimately related to the chain structure through an
application of the rank-nullity theorem.
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25Lemma

Euler via

Homology

Suppose that the chain complex is bounded. Then

χ(C ,d) =
∞∑

k=−∞
(−1)k dim H k .

Proof: Because our complex is bounded, there exists n such that |k| ≥ n implies
that C k = H k = 0. Then we proceed by computing the sum:

χ(C ,d) =
i∑

k=−i
(−1)kC k

Applying the Rank-Nullity theorem

=
i∑

k=−i
(−1)k (dim(kerd k )+dim( Im d k ))

Shifting the sum

=
i∑

k=−i
(−1)k (dim(kerd k )−

i∑
k=−i

(−1)k−1 dim( Im d k ))

=
i∑

k=−i
(−1)k dim(kerd k )−dim( Im d k−1)

=
i∑

k=−i
(−1)k dim H k

∂2

One interpretation of homology is that it is an algebraic measure of how far a
sequence strays from being exact.

26Definition

Exact Sequences

A chain complex (C ,d) is called exact if H k (C ) = 0 for all k.

Notice by Lemma 25 , whenever (C ,d) is exact, the Euler characteristic χ(C ,d) =
0.

27Corollary Inclusion-Exclusion holds for sets.

Proof: In ?? we showed that the chain complex dictating inclusion-exclusion for
sets was exact. Furthermore, we showed that the inclusion-exclusion principle

for sets was equivalent to χ(A,d) = 0. ∂2
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Maps between chain complexes, addition and subtraction 4

Now that we have chain complexes, we want to look at functions that can go
between them. Just like when we study vector spaces and groups, it is only useful
to study the maps between these objects which preserve their structure. We want
the function between chain complexes to be compatible with the differential.

28 Definition

Chain map

Let (A,dA) and (B ,dB ) be chain complexes, and let f i : Ai → B i be a collection
of maps. Then we say that f • = { f i } is a cochain map if the following diagram
commutes for all i :

Ai Ai+1

B i B i+1

d i
A

f i f i+1

d i
B

.

A chain map not only preserves the boundary structure of the chain complex, it
also gives us maps between their homology groups.

29 Claim

Induced map on

cohomology

Let f • : (A,dA) → (B ,dB ) be a chain map. Then there is a well defined map
between the cohomology of (A,dA) and (B ,dB ) given by

f k : H k (A) →H k (B)

[a] 7→[ f k (a)].

Proof: In order to show that this map is well defined, we need to check two things.
First we must show that elements representing homology classes in A get sent
to elements representing homology classes in B . Second, we must show that
resulting map does not depend on the choice of representative for a.

– For the first part, let [a] ∈ H k (A) be an element of homology. In order for
[ f k (a)] to be an element of H k (B), we need that f k (a) ∈ kerdB . We make a
computation:

dB ( f k (a)) = f k+1(dA(a))

Since [a] ∈ H k (A), we know that a ∈ kerdA .

= f k+1(0) = 0.

19



– For the second part, suppose we have 2 different representatives of the
same cohomology class [a] = [a′] ∈ H k (A). We would like to show that
[ f k (a)] = [ f k (a′)] ∈ H k (B).
Two classes in homology are equivalent if they differ by an element in the
image of d k−1. Therefore, we can prove the statement by finding an element
β ∈ B k−1 which satisfies:

[ f k (a)]− [ f k (a′)] = d k−1(β).

We can construct this β by looking at the difference a −a′. Since [a] = [a′],
there is an element α ∈C k−1(A) so that dA(α) = a −a′.
We now are in the place to make a computation.

f k (a)− f k (a′) = f k (a −a′)

= f k (dA(α))

=dB ( f k−1(α)).

We set β = f k−1(α) to realize the equivalence relation between the two
homology classes [ f k (a)], [ f k (a′)].

∂2

The most useful example of exact complexes are short exact sequences, which are
exact complexes of the form:

0 A B C 0i π .

From the definition of exactness i : A → B must be injective, and π : B →C must
be surjective. If we were only interested in vector spaces, then B = A⊕C would
be the only interesting data about this exact complex. If we think of A,B , and C
as being the generalizations of the numbers dim(A),dim(B) and dim(C ), then a
short exact sequence is a way to encode that dim(A)+dim(C ) = dim(B).

In the world of chain complexes, B could contain more data than just that of
the vector spaces A⊕C – we need to additionally consider the information that
comes from a differential.

30Definition Let (A,dA), (B ,dB ), (C ,dC ) be chain complexes. Let i • : A• → B• and π• : B• →C •

be maps of cochain complexes. We say that

0 A• B• C• 0i • π•

is a short exact sequence of chain complexes if for all k,

0 Ak B k C k 0i k πk

is a short exact sequence of vector spaces.

20



The theory of short exact sequences of chain complexes is a lot richer than the
theory for vector spaces, because chain complexes contain much more internal
structure. We will now associate to each map f • : A• → B• a canonical short exact
sequence.

31 Definition

Cone of Chain

morphism

Let f • : A• → B• be a map of cochain complexes. Define the cone of f , to be the
cochain complex with

– Chain groups conek ( f ) = Ak+1 ⊕B k

– Differential defined by d k
cone(a,b) = (−d k+1

A (a),d k
B (b)+ f k+1(a)).

Note that for each k, Ak+1 → conek ( f ) → B k is a short exact sequence. We should
think of cone•( f ) as being the chain complex created by “attaching” A•+1 to B•.

32 Claim

Mapping cone is

complex

cone•( f ) is a cochain complex.

Proof: A convenient notation for this proof will be to think of d k
cone as having the

form of a matrix:

d k
cone =

(−d k+1
A 0

f k+1 d k
B

)
.

We can then compute d k+1
cone ◦d k

cone by using matrix multiplication.

d k+1
coned k

cone =
(−d k+2

A 0
f k+2 d k+1

B

)(−d k+1
A 0

f k+1 d k
B

)
=

(
d k+2

A ◦d k+1
A 0

d k+1
B ◦ f k+1 − f k+2 ◦d k+1

A d k+1
B ◦d k

B

)
Using the definitions of chain map and chain differential,

=
(
0 0
0 0

)
.

∂2

The cone of a morphism f • : A• → B• fits into a short exact sequence of chain
complexes,

0 B• cone•( f ) A•+1 0i π

where i ,π are the natural inclusion and projection maps. Notice the shift in the
index on the left hand side. A piece of notation that we will use for this shift in
index is

C •−1 =C •[−1].
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The way that A•+1 is glued to B• is dictated by the map f •. In this way, the
exact sequence of chain complexes not only remembers that we can put A•+1,B•

together to build cone•, but also how these things were glued together.

From this short exact sequence, we surprisingly get a long exact sequence of
homology groups.

33Theorem

SES-LES for

mapping cones

Let f • : A• → B• be a chain map. We have a short exact sequence of chain
complexes

0 B• cone•( f ) A•[1] 0i π

And we have the following long exact sequence of homology groups:

· · · H k (B) H k (cone( f )) H k (A[1]) H k+1(B) · · ·f i π f
.

Proof: Showing that this is a long exact sequence amounts to checking that
the sequence is exact at H k (B), H k (cone( f )), H k (A[1]). We will show that the
function is exact at H k (cone( f )) → H k (A[1]) → H k+1(B), which is perhaps the
most surprising statement in the proof. To show the isomorphism

ker( f : H k (A[1]) → Hk+1(B)) ' Im (π : H k (cone(h)) → H k (A[1]),

we will show two inclusions.

We prove that ker( f : H k (A[1]) → H k+1(B)) ⊂ Im (π : H k (cone( f )) → H k (A[1]).
Take a cohomology class [a] ∈ H k (A[1]) which is in the kernel of f so that

f ([a]) = [0].

Since conek ( f ) = Ak [1]⊕B k , a natural candidate for an element of conek ( f )
whose image under π is a would be (a,0). However, it may not be the case that
this a homology class, as

dcone(a,0) = (dA a, f (a))

which is not necessarily zero. As [a] ∈ H k (A[1]), we are guaranteed that dA a = 0.
However, the only data that we have about f (a) is that it is cohomologous to 0.
Since f ([a]) = [0], there is an element b ∈ B k realizing the equivalence relation
via f (a) = dB b. Replacing our candidate element2 with

π−1(a) := (a,−b)

2The notation π−1(a) means that we have picked an inverse image of a under π. However, the
map π is usually not invertible, and choices were made to produce this inverse image. In short,
π−1 is not a map.
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we can compute

π(π−1(a)) =π(a,−b) = a

d cone(π−1(a)) =dcone(a,−b) = 0

Therefore, ker( f : H k (A[1]) → H k+1(B)) ⊂ Im (π : H k (cone( f )) → H k (A[1]).

The other direction is that ker( f : H k (A[1]) → H k+1(B)) ⊃ Im (π : H k (cone( f )) →
H k (A[1]). To show this, we need to show that the composition of f ◦π = 0 on
cohomology. Let [(a,b)] ∈ H k (cone( f )) be any element of homology. Since this is
an element of homology, dcone(a,b) = 0, and in particular,

f (a) =−dB b.

We can use this when computing:

f ◦π[(a,b)] = f [(a)] = [−dB b] = [0].

We omit the arguments for showing exactness at the other portions of the se-

quence. ∂2

This is sometimes notated in the following way:

· · · H n(cone( f )) H n(A[1])

H n+1(B) H n+1(cone( f )) H n+1(A[1])

H n+2(B) H n+2(cone( f )) · · ·

i π

f
i π

f
i π

There is a useful corollary that follows from this construction:

34 Corollary

2-out of 3

Suppose that A•,B• are exact, and let f • : A• → B• be any map. Then cone•( f ) is
exact.

Proof: By assumption H k (A) = H k (B) = 0 for all k. Therefore, we have the long
exact sequence

· · · H n(cone( f )) 0

0 H n+1(cone( f )) 0

0 H n+2(cone( f )) · · ·

i π

f
i π

f
i π

from which it follows that H k (cone( f )) = 0 for all k. Therefore cone•( f ) is exact.
∂2
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35 Inclusion-Exclusion
Let X be a set with a decomposition into smaller subsets, X = ⋃

i∈I Ui . Let UJ = ∩ j∈JUi .

There exists an exact chain complex C R•(U ) with C R•(U ) =⊕
J⊂I ,|J |=k F (UJ ).

We will prove this theorem by using the tools of homological algebra, and induct on the
size of I .

Definition.Let U = {Ui }i∈I be a collection of subsets which cover X . Denote by U∩ := {U j }

A covering U = {Ui } of X is a collection of subsets Ui ⊂ X so that

X = ⋃
i∈I

Ui .

To each covering of X we will create an resolution complex C R•(U ).

Definition.Let U = {Ui }i∈I be a covering of X . For each J ⊂ I , define the subset UJ :=
X ∩ (

⋂
i∈J Ui ). Suppose that J and K differ by a single index. We will then write J lK .

Notice that whenever K m J we have an inclusion map iKmJ : UK →UJ , and therefore we
get an associated map

i∗KmJ : F (UJ ) →F (UK ).

We define the chain groups

C Rk (U ) := ⊕
K⊂I ,|K |=k

F (UK )

and define the differential map to be

d k
C R := ⊕

KmJ
i∗KmJ .



We will show that this gives us a chain complex by constructing it in a different fashion.

Lemma.Let Û1 be the elements of X which only belong to U1, Let UX = {Ui }i∈I be a cover
of X . Let U∩ = {Ui ∩U1}1 6=i∈I be a cover for U1 \ Â1. Let U\ = {Ui }1 6=i∈I be a cover for
X \Û1. Then there is a natural maps i J :

⋂
i∈J (Ui ∩U1) →⋂

i∈J (U )i ) for each J , inducing a
map

i∗ : C R•(U\) →C R•(U∩)

and C R•(UX ) = cone(i∗)⊕ (F (Û1) →F (Û1)

As always, a diagram explains the core concept of this proof:

A12 A1

⊕ ⊕

A123 A13 A2 X

⊕ ⊕

A23 A3

C R•(U∩⊕ A1)

C R•(U∪⊕ A1)

Corollary.The homology of the resolution complexes are trivial: H•(C R•(U )) = 0, i.e.
C R•(U ) is exact.

Proof: We again prove by induction on the size of the cover. As a base case, we can let
U = {X }, then H•(U ) = 0 trivially.
Now assume that we know by induction that C R•(U∩) and C R•(U∪) have trivial homology.

Since the cone of exact chain complexes is exact, we get C R•(U ) is exact. ∂2



Mayer Vietoris
We finally return to one of the core concepts of this course: given a decomposition
of a space X = A ∪B , what can we tell about the topology of X in terms of the
topology of A and B?

5

At the start of the course, we alluded that we would like an algorithm to compute
the number of connected components via an inclusion-exclusion principle on
a decomposition of X into smaller topological spaces. Let’s look at an example
where this works, and an example that shows that our theory requires some more
depth.

X

A

B

A∪B

36Example Let S1 = A∪B as drawn in the figure. Let’s try to
compute the number of connected components
of S1 using this decomposition. A ∩B has two
connected components, so we would have that

b0(A)+b0(B)−b0(A∩B) = 0

which means that we cannot use the principle
of inclusion-exclusion to compute the number
of connected components of the circle. The ob-
struction in this case to the principle of inclusion-
exclusion working is the presence of nontrivial
homology in H 1(S1).

While we cannot use the principle of inclusion-exclusion to compute the number
connected components, we can get an inclusion-exclusion like principle to work
homologically. For full details on how to generalize inclusion-exclusion like
principles to general settings, see Appendix ??.

37Theorem

Mayer-Vietoris

Let A,B , X be topological spaces. Let

j A : A →X

jB : B →X

be two inclusions of topological spaces so that A∪B = X . Let A∩B be the common
intersection of A and B in X , with the natural inclusions

i A : A∩B →A

iB : A∩B →B
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Then there is a short exact sequence of chain complexes

C •(A)

0 C •(X ) ⊕ C •(A∩B) 0

C •(B)

i∗Aj∗A

j∗B −i∗B

This in turn gives us a long exact sequence on homology from Lemma ??.

· · ·→ H k−1(A∩B) → H k (X ) → H k (A)⊕H k (B) → H k (A∩B) → H k+1(X ) →···

Proof: To show that this is an exact sequence, we need to check that the chain
maps form exact sequences of vector spaces at each grading k:

0 C k (X ) C k (A)⊕C k (B) C k (A∩B) 0.
j∗A⊕ j∗B i∗A⊕(−i∗B )

Let’s start by checking exactness at the first position of the sequence.

0 C k (X ) C k (A)⊕C k (B)
j∗A⊕ j∗B

The statement of exactness at this point is that ker( j∗A ⊕ j∗B ) = 0, or that the map
is injective. Recall that Ck (X ),Ck (A) and Ck (B) are continuous Z2 labellings of
the k-intersections of the covering sets Ui . Given Uσ ⊂ X a k-fold intersection of
open sets, it is either the case that Uσ ⊂ A or Uσ ⊂ B . As a result, given φ ∈C •(X ),
the labelling of Uσ can be determined by its image under the map j∗A or j∗B . This
means that the labelling φ can be recovered from ( j∗A ⊕ j∗B )(φ), so ( j∗A ⊕ j∗B ) is
injective.

At the last position of the sequence,

C k (A)⊕C k (B) C k (A∩B) 0.
i∗A⊕(−i∗B )

exactness means that Im i∗A ⊕ i∗BB = C k (X ) i.e. i∗A ⊕ i∗B is surjective. In fact, i∗A
is already surjective, as Uσ ⊂ A ∩B is contained in Uσ ⊂ A, and therefore every
labelling of an open set in C k (A ∩B) can be lifted to a labelling of open sets in
C k (A) and extended by zero over C k (B).

The remaining tricky part of the argument is on the middle section,

C k (X ) C k (A)⊕C k (B) C k (A∩B)
j∗A⊕ j∗B i∗A⊕(−i∗B )

Here, the statement is that ker(i∗A ⊕ (−i∗B )) = Im ( j∗A ⊕ j∗B ). The kernel of the map
( j A ⊕ (− jB )) consists exactly of labellings of the k-fold intersections on A and B
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which agree on the intersection. These are exactly the labellings which are in the
image of j∗A ⊕ j∗B .

Once we know that the short sequence of chain complexes is exact, the long exact
sequence of homology groups

· · ·→ H k−1(A∩B) → H k (X ) → H k (A)⊕H k (B) → H k (A∩B) → H k+1(X ) →···

follows from the application of the Zig-Zag Lemma ( Station 6 .) ∂2

We usually represent the Mayer-Vietoris long exact sequence with the following
diagram of homology groups :

· · · H k (A)⊕H k (B) H k (A∩B)

H k (X ) H k+1(A)⊕H k+1(B) H k+1(A∩B)

H k+1(X ) H k+2(A)⊕H k+2(B) · · ·

j∗A⊕ j∗B i∗A⊕i∗B

δ
j∗A⊕ j∗B i∗A⊕i∗B

δ
j∗A⊕ j∗B i∗A⊕i∗B

The maps i∗ and j∗ somewhat act in a normal way: cycles in the spaces X , A,B
and A∩B are related to each other. We now will try to figure out what the map δ

does.

This requires a better geometric understanding of what each homology class
means. Each element of Ck (X ) represents a labelling of the k-simplices of X , and
the differential map “pushes” those labellings to the higher simplices.

A label represents a non-trivial class in H k (X ) if, when pushed to the higher
dimensional simplices it cancels out, and the labelling itself does not arise from a
lower-dimensional labelling.

Suppose that we have a labellingφ of the simplices of A∩B giving us a cohomology
class. This means that the “push” of the labelling on A∩B to the higher simplices
inside of A∩B will cancel out. Let us take φ some labelling of the k-simplices on
A∩B representing some cohomology class. Use this to create a labelling φA on A
and a labelling φB on B . Even though dA∩Bφ equals zero, the extended labellings
may not have this property, and so dAφA and dBφB are some interesting labellings
to talk about. They, in some sense, represent the “boundary” A ∩B inside of A
and B .

Let’s now use both dAφA and dBφB to create a labelling for all of X . We take
dAφA +dBφB as a labelling on all of X . This element is, surprisingly, closed.
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1

1
1

1
1

1

φ

0

0 0
0 0

0

dA∩Bφ

1

0

1
0

0
0 0

0

0
dBφB

0

00
0 0

0

1

1

dAφA

1

1
1

1
1

1

0

0

φB1

1
1

1
1

1 0

φA

1

0

1
0

00
0 0

0

1

1

dAφA +dBφB
0

0

dX (dAφA +dBφB )
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38 Homology of Sphere
Let's compute the homology of sphere Sn by using Mayer-Vietoris and induction. For this

example, we will start with the assumptions that we know the homology of a disk ??.

We will prove that H k (Sn) = Z2 if and only if k = n,0 by induction on n. Here, we will
run the Mayer-Vietoris argument on a the decomposition of Sn into two disks, A,B =
Dn , which are suppose to represent the upper and lower hemispheres. Notice that
the intersection of the two hemispheres is the equatorial sphere, which is a sphere of
1-dimension lower.

Dn

Dn

Sn−1 Sn

So, we have a short exact sequence of chain complexes:

0 →C •(Sn) →C •(Dn)⊕C •(Dn) →C•(Sn−1) → 0

This short exact sequence gives us a long exact sequence of homology groups :

H 0(Sn) H 0(Dn)⊕H 0(Dn) H 0(Sn−1)

H 1(Sn) H 1(Dn)⊕H 1(Dn) H 1(Sn−1)

H 2(Sn) · · · H n−2(Sn−1)

H n−1(Sn) H n−1(Dn)⊕H n−1(Dn) H n−1(Sn−1)

H n(Sn) H n(Dn)⊕H n(Dn) H n(Sn−1) 0

δ

δ

δ

δ
i0⊕ j0



Substituting in the groups we know from induction and our assumptions

H 0(Sn) Z2 ⊕Z2 Z2

H 1(Sn) 0 0

H 2(Sn) · · · 0

H n−1(Sn) 0 Z2

H n(Sn) 0 0 0

δ

δ

δ

δ
i0⊕ j0

We therefore may now look at these shorter exact sequences instead:

0 →Z2 → H n(Sn) → 0

0 → H k (Sn) → 0 k 6= n,0

0 → H 0(Sn) → Z2 ⊕Z2 → Z2 → H 1(Sn) → 0

Running through the properties of exactness at each part shows confirms our computa-

tion of the homology of Sn .



Inclusion-Exclusion principles: The Zig-Zag Lemma
Let’s now use Inclusion-Exclusion to build up some more intuition on what
homological algebra can get us. We will now work a little abstractly.

6

Let C be a collection of objects. Let’s suppose that objects in this collection
admit decompositions, so that we may write 3

X = A∪B

and for every such decomposition, we may also associate an objects called A∩B .

A property is a function P : C →Nwhich assigns to each object a number.

39Definition Let C be a category, and P : C → N be a property. We say that P obeys the
homological inclusion-exclusion principle if for all X , there exists a chain complex
P•(X ) satisfying the following conditions:

– Recovery of P: We have that dim H0(P•(X )) = P (X ).

– Inclusion-Exclusion: Whenever X = A∪B , we have a short exact sequence:

0 → P•(A∩B) → P•(A)⊕P•(B) → P•(X ) → 0.

Notice that satisfying a homological inclusion-exclusion principle is in a lot of
ways like satisfying a inclusion-exclusion principle, in that

dim(P0(X )) = dim(P0(A))+dim(P0(B))−dim(P0(A∩B)).

While we don’t get an actual inclusion exclusion principle from a homological
inclusion-exclusion principle, we get something very close to the principle hold-
ing. In order to see the relation between inclusion-exclusion and homological
inclusion-exclusion, we need a powerful lemma from homological algebra.

40Theorem

Zig-Zag Lemma

Let A•,∂A• , B•,d B• and C•,dC• be chain complexes. Given

0 A• B• C• 0
f g

a short exact sequence, there exists a unique map δ such that the following is a
long exact sequence on homology:

· · · Hn+1(C ) Hn(A) Hn(B) Hn(C ) Hn−1(A) · · ·g∗ δ f∗ g∗ δ f∗

3We also adopt homological grading conventions in this section, as opposed to cohomological
grading conditions.
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Before we get into a proof of this theorem, let’s quickly make a remark on the map
δ. On the one hand, the map is remarkable, as there is no reason to expect a map
connecting C → A. However, we’ve seen the existence of a long exact sequence
that arises from a short exact sequence before when we looked at cones.

Foo

In a certain sense, this theorem says that all short exact sequences of chain
complexes essentially arise from the cone sequence. While we will not be able to
prove this result in this class, one can make a version of this statement true by
exploring the derived category and triangulated structures.

Proof: First, let’s expand the original diagram:

...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

∂ ∂B ∂C

∂n+1

fn+1

∂B
n+1

gn+1

∂C
n+1

∂A
n

fn

∂B
n

gn

∂C
n

∂A
n−1

fn−1

∂B
n−1

gn−1

∂C
n−1

We want to construct a function δ from Hn(C ) to Hn−1(A). The following ar-
gument is an element chasing argument, which can be a bit difficult to follow
through; it’s suggested that the reader write out the argument step-by-step at
some point on their own to see where the maps come from.
Since this lemma contains several statements, we will check some of them and
leave the remainder as exercises.

41 ClaimThere exists a canonical map δ : Hk (C ) → Hk−1(A).

As mentioned before, we should somewhat expect the existence of this map from
our studies of cones. First, let’s try and show that to a homology class [γ] ∈ Hk (C ),
we can find an element in Ak−1

– As the map gn is surjective, we know that we can pick an element in the
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preimage β so that gn(β) = γ. Notice that this is not a canonical choice!

...
...

...

0 Ak+1 Bk+1 Ck+1 0

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

...
...

...

∂A
k+1

fk+1

∂B
k+1

gk+1

∂C
k+1

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

– We can apply ∂B
n (β) and we wind up with an element in Bn−1. Using that

gn−1 is a chain map, we get that

gn−1∂
B
n (β) = ∂C gn(β) = ∂Cγ= 0

where the second equality comes from the fact thatγ represents a homology
class.

...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

∂A
n+1

fn+1

∂B
n+1

gn+1

∂C
n+1

∂A
n

fn

∂B
n

gn

∂C
n

∂A
n−1

fn−1

∂B
n−1

gn−1

∂C
n−1

– Since ∂B
n (β) ∈ ker gn−1, and the sequence is chain complexes is exact, we

know that ∂B
( β) ∈ Im fn−1. Since fn−1 is injective, we know that there is
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unique α corresponding to this β so that fn−1(α) = ∂B (β).

...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

∂A
n+1

fn+1

∂B
n+1

gn+1

∂C
n+1

∂A
n

fn

∂B
n

gn

∂C
n

∂A
n−1

fn−1

∂B
n−1

gn−1

∂C
n−1

– We initially define δ[γ] =α.

We now need to show that α is a homology class, that is, that ∂A
k−1(α) = 0.

– Look at ∂A
k−1(α). Since this diagram is commutative, we have that fk−2∂

A
k−1(α) =

∂B
k−1 fk−1(α).

...
...

...

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

0 Ak−2 Bk−2 Ck−2 0

...
...

...

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

∂A
k−2

fk−2

∂B
k−2

gk−2

∂C
k−2

– Recalling or definition of α, we know that fk−1(α) = ∂B
k (β), so ∂B

k−1(∂B
k (β) =
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fk−2(∂k−1α) = 0. Since fk−2 is injective, we get that ∂k−1α) = 0.

...
...

...

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

0 Ak−2 Bk−2 Ck−2 0

...
...

...

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

∂A
k−2

fk−2

∂B
k−2

gk−2

∂C
k−2

Finally, when we constructed the class α, we had to make a choice of β= g−1
k (γ).

Let’s show that the homology class of α does not depend on the choice of β lifting
α.

– Suppose that β,β′ are two different liftings of γ so that gk (β)− gk (β′) = 0.
We want to show that the associated classes [α], [α′] are homologous. Since
gk (β−β′) = 0, there exists a class f −1

k (β−β′) due to exactness of the row.

...
...

...

0 Ak+1 Bk+1 Ck+1 0

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

...
...

...

∂A
k+1

fk+1

∂B
k+1

gk+1

∂C
k+1

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

– Due to commutativity of the highlighted square, we have that fk−1∂
A
k ( f −1

k (β−
β′) = ∂B

k (β−β′) = fk−1(α−α′). Due to the injectivity of fk−1, we conclude
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that α−α′ = ∂A
k ( f −1

k (β−β′), so these two classes are cohomologous.

...
...

...

0 Ak+1 Bk+1 Ck+1 0

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

...
...

...

∂A
k+1

fk+1

∂B
k+1

gk+1

∂C
k+1

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

This completes the proof that the map δ is well defined on homology. Now we
will show some of the exactness statements.

42 ClaimThe sequence of homology groups

Hk (B)
gk−→ Hk (C )

δk−→ Hk−1(A)

is exact.

In order to prove this claim, we need to show that ker(δ) ⊂ Im (gk ), and Im (gk ) ⊂
kerδ.

– To show that Im (gk ) ⊂ kerδ, it suffices to show that the composition δk ◦
gk = 0. Let [β] ∈ Hk (B) be a homology class. Then [δk gk (β)] = [ f −1

k−1(∂B
kβ)].

Since [β] is a class in homology, the boundary map starts by computing
∂B

kβ= 0, and we conclude that δk (gk (β)) = 0.

– To show that the ker(δk ) ⊂ Im (gk ), let γ be an element so that δk [γ] = 0.
Since the map gk : Bk → Ck is surjective, we might hope that β = g−1

k γ,
a choice of lift of γ, is a class in homology. So we need to show that
∂B

k (β) = 0. By commutativity of the lower right square, we have that ∂B
k (β) =
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fk−1(δ(γ)) = 0.

...
...

...

0 Ak+1 Bk+1 Ck+1 0

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

...
...

...

∂A
k+1

fk+1

∂B
k+1

gk+1

∂C
k+1

∂A
k

fk

∂B
k

gk

∂C
k

∂A
k−1

fk−1

∂B
k−1

gk−1

∂C
k−1

43Claim The sequence of homology groups

Hk+1(C )
δk+1−−−→ Hk (A)

fk−→ Hk (B)

is exact.
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Exercises P

The zero vector space, 0, is the vector space which only has one element in it.

P1 ExerciseLet V1 and V2 be vector spaces. Suppose that f : V1 → V2 is a linear map. Show
that ker( f ) = {0} if and only if the map f : V1 →V2 is injective.

P2 ExerciseSuppose we have 5 vectors spaces and maps between them.

V 0 V 1 V 2 V 3 V 4d 0 d 1 d 2 d 3

and suppose that Im d i = kerd i+1 for each i .

– Show that V 0 = 0, then d 1 is injective.

0 V 1 V 2d 0 d 1

– Show that if V 4 = 0, then d 2 is surjective.

V 2 V 3 0d 2 d 3

– Show that if V 0 =V 3 = 0, then d 1 : V 1 →V 2 is an isomorphism.

0 V 1 V 2 0d 0 d 1 d 2

– Show that if V 0 =V 4 = 0, then dim(V 1)+dim(V 3) = dim(V 2).

0 V 1 V 2 V 3 0d 0 d 1 d 2 d 3

– Furthermore, show that there is a non-canonical isomorphism of vector
spaces, V 2 =V 1 ⊕V 3.



P3Exercise

Translating Sets

in to Vector

Spaces

Let A be any finite set. Let F (A) be the set of functions φ : A →Z2.

– Prove that there are 2|A| such functions.

– Prove that F (A) is a Z2 vector space.

– Prove that dim(F (A)) = |A|.

P4Exercise

Categories and

Functors

Show that if f : A → B and g : B →C are two maps of sets, then

(g ◦ f )∗ = f ∗ ◦ g∗,

i.e. the pullback relation preserves compositions.

P5Exercise Let S1,S2 ⊂ A be two subsets as before.

S1

S1 ∩S2 ⊕ A

S2

A2 A1 A0

i∗1 j∗1

j∗2i∗2

i∗ j∗

Prove that the map i∗ is surjective.

P6Exercise

Open Ended

Exercise

Suppose that S1,S2 and S3 are three sets, and A = S1 ∪S2 ∪S3. Describe how
one would extend the Inclusion-Exclusion formula to this setting using the linear
algebra machinery that we set up before.



P7 ExerciseLet U ⊂V be a subspace of a vector space. Consider the equivalence relation

v1 ∼U v2 if and only if v1 − v2 ∈U .

Show that the quotient space V /U := {[v]∼U } given by the set of equivalence
classes is a vector space.

P8 ExerciseLet U ⊂V be a subspace of a vector space. Construct an exact chain complex

0 →U →V →V /U → 0

P9 ExerciseLet G be a graph – a simplicial complex with only 0 and 1 dimensional simplices.
The spaces C 0(G ,Z2) and C 1(G ,Z2) have basis given by the vertices and edges of
the graph. Describe d 0 as a matrix in terms of this basis.

P10 ExerciseShow that whenever e1, . . . ,ek sequence of edges with k odd which form a cycle in
G , then one of e1+. . .+ek ∈C 1(G ,Z2) is not in the image of d 0. Make a similar con-
clusion for when k is even. Conclude that if G has a cycle, H 1(G) := H 1(C •(G ,Z2))
is at least 1-dimensional.

P11 ExerciseShow that H 0(G) is one fewer than the number of connected components in G .

P12 ExerciseShow that H 1(G) = 0 if and only if G is a tree.



P13Exercise Suppose that G has one connected component. Compute the dimension of H 1(G)
in terms of the number of edges and vertices of G .

P14Exercise Let S2 be the simplicial complex defined by the tetrahedron (do not include the
interior 3-simplex, but only the 4 faces.) Show that H 0(S2) = 0, H 2(S2) =Z2 and
H 1(S2) = 0.

P15Exercise Let C i (X ,Z2) be the cochain complex associated to a simplicial space. Show that
if X has only one connected component then H 0(Z2) = 0.

In class, we looked at one configuration of open sets which covered the circle.
We will look at some examples where we use multiple sets to cover a topological
space.

P16Exercise Let X be the line segment drawn below, covered by two sets U1 and U2. Repeat
the connected component construction for the line covered with two sets.

U1

U2

Show that the map i∗ : C 1(X ) →C 2(X ) is surjective, and so

dim(C 2(X ))−dim( Im (i∗)) = dim(ker(0C 2(X )→0))−dim( Im (i∗)) = 0.



P17 ExerciseLet X be the line segment, covered with n open intervals which overlap as in the
diagram below:

U1 U3U2 Un
· · ·

Define a sequence

C 0(X )
j∗−→C 1(X )

i∗−→C 2(X )

where C 1(X ) is based on the connected components of the Ui , and the C 2(X ) is
based on the intersections Ui ∩Ui+1. Again, show that

dim(C 2(X ))−dim( Im (i∗)) = dim(ker(0C 2(X )→0))−dim( Im (i∗)) = 0.

P18 ExerciseLet X be the circle, covered with n intervals which overlap end to end as drawn
below.

U1

U2U3

U4

· · · Un

Define C 1(X ) and C 2(X ) as in the previous problem.

– Pick a basis for C 1(X ) and C 2(X ) given by functions which map a single
connected component to 1, and all other components to zero. Write down
the map i∗ in this basis.

– Show that for this cycle,

dim(C 2(X ))−dim( Im (i∗)) = dim(ker(0C 2(X )→0))−dim( Im (i∗)) =−1.



P19Exercise Cover this figure eight with sets so that

– Each set is connected

– Each pair of sets intersect in one connected component

– No three sets have common overlap.

Define a sequence

C 0(X )
j∗−→C 1(X )

i∗−→C 2(X )

where C 1(X ) is based on the connected components of the Ui , and the C 2(X ) is
based on intersection on the intersections Ui ∩Uk . Then compute

dim( Im (i∗))−dim(C 2(X )).

P20Exercise Let A• be a chain complex, and let B k := H k (A) be the chain complex whose
cochain groups are given by the cohomology groups H k (A) and whose differential
is always zero. Verify that π : A• → B• which sends each element of A to its
cohomology class is a cochain map, and π : H k (A•) → H k (B•) is an isomorphism.

P21Exercise Let X = (∆X ,SX ) be a simplicial complex. A simplicial subcomplex is a simplicial
complex Y = (∆Y ,SY ) with SY ⊂SX and

σ ∈∆Y ⇒σ ∈∆X .

Show that if Y is a subcomplex of X , there is a cochain map

i∗ : C •(X ,Z2) →C •(Y ,Z2).



P22 ExerciseLet Y ⊂ X be a simplicial subcomplex. Denote the corresponding map of topolog-
ical spaces i : Y → X . Construct a new simplicial complex, cone(i ) whose vertex
set is

Scone :=S ∪ {x},

and whose simplifies are:

∆cone :=∆X ∪ {σ∪ {x} |σ ∈∆Y }.

Draw a picture for cone(i ) when X is an interval, and Y is the two boundary
vertices of the interval. Furthermore, explain why this operation is called the
cone.

P23 ExerciseLet i∗ : C •(X ,Z2) →C •(Y ,Z2) be the map considered above. Prove that

C •(cone(i ),Z2) = cone•(i∗)[−1]

P24 ExerciseThe n-disk (denoted Dn) is the simplicial complex where SDk := {0, . . . ,n} and

∆Dn = {σ |σ⊂SDn }.

Let idDn : Dn → Dn be the inclusion of Dk into itself as a subcomplex. Show that

cone(idDn ) = Dn+1.

When X is a simplicial complex, we denote by H i (X ,Z2) to be the i -th cohomol-
ogy group of C •(X ,Z2).

P25 ExerciseUse the previous characterization of Dn+1 to compute the homology groups
H i (Dk ) inductively.



P26Exercise The n-sphere (denoted Sn) is the simplicial complex where SSn = {0, . . . ,n +1}
and

∆Sn = {σ |σ⊂SSn ,σ 6= {0, . . . ,n +1}.

Show that there is a map iSn : Sn → Dn+1, and that

cone(iSn ) = Sn+1.

P27Exercise Use the previous characterization of Sn+1 to compute the cohomology groups
H i (Sn) inductively.


