Realizability and Obstruction in Tropical Geometry

Jeff Hicks

2021

University of Cambridge

Jeff Hicks (University of Cambridge)

Background: Mirror Symmetry

Background: Complex to Tropical Correspondence

Geometric A-realization

A-realizability vs B-realizability

Applications

Background: Mirror Symmetry

Mirror Symmetry

Mirror Symmetry is a duality between symplectic geometry on a manifold X and complex geometry on a *mirror manifold* \check{X} .

- What is the mechanism which interchanges these two types of manifolds?
- What portions of the geometry are interchanged?

Background: Mirror Symmetry

Symplectic \leftrightarrow Affine \leftrightarrow Complex

Jeff Hicks (University of Cambridge)

From Affine to ω and J

Definition

An integral affine manifold Q is a manifold possessing charts whose transitions are all integral affine transformations.

Main feature: Lattices inside of (co)tangent bundle.

 $T^*_{\mathbb{Z}}Q \subset T^*Q$ $T_{\mathbb{Z}}Q \subset TQ$

Building the complex and symplectic manifolds

Remark

 T^*Q has a symplectic structure. TQ has an almost complex structure.

$$egin{aligned} &(X,\omega):=(T^*Q/T^*_{\mathbb{Z}}Q,dp\wedge dq).\ &(\check{X},J):=(TQ/T_{\mathbb{Z}}Q,J). \end{aligned}$$

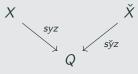
Example (Running Example)

If
$$Q = \mathbb{R}^n$$
, then $X = \check{X} = (\mathbb{C}^*)^n$.

SYZ Mirror Symmetry

Conjecture (Strominger, Yau, and Zaslow 1996)

When two spaces X and \check{X} have dual Lagrangian almost torus fibrations over common base Q, their symplectic and complex geometry are interchanged.



Lagrangian submanifolds of $X \leftrightarrow$ Complex Submanifolds \check{X}

Context: HMS

More precisely, homological mirror symmetry (Kontsevich 1995) predicts the equivalence of the following categories:

- The Fukaya category of X, whose:
 - Objects are Lagrangian submanifolds and
 - hom(L, K) is the Lagrangian intersection Floer homology
- Derived Category of Coherent sheaves on \check{X} . Note that every complex submanifold gives a sheaf by direct image.

Naïve interchanging

Let $\underline{V} \subset Q$ be an affine submanifold so that

 $T_{\mathbb{Z}}Q\cap T\underline{V}$

is a full lattice.

• Conormal subbundle gives us a Lagrangian submanifold

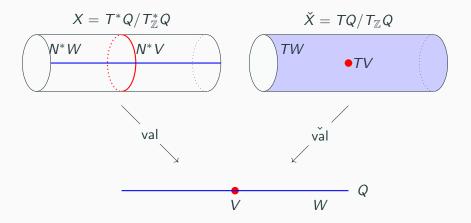
 $N^*\underline{V}/N^*_{\mathbb{Z}}\underline{V}\subset X$

• Tangent subbundle to V gives us an almost complex submanifold

$$T\underline{V}/T_{\mathbb{Z}}\underline{V}\subset\check{X}.$$

Background: Mirror Symmetry

Symplectic - Tropical - Complex Correspondence on \mathbb{C}^*



Jeff Hicks (University of Cambridge)

Realiz. and Obstruc.

2021 10/35

Background: Complex to Tropical Correspondence

Background: Tropical Curves

Definition

A unweighted tropical curve is a graph $V \subset Q$ whose

- Edges $V^{(0)} := \{ \underline{V}_1, \dots, \underline{V}_k \}$ are all 1-dimensional affine subspaces
- At each vertex $v \in V^{(1)}$, we satisfy a balancing condition

$$\sum_{\underline{V}_i \ni v} \vec{p}_i = 0$$

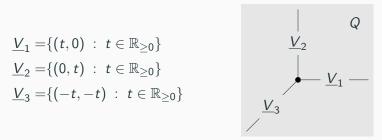
where $\vec{p_i}$ is the primitive lattice vector for \underline{V}_k .

There is an analogous definition for higher dimensional tropical subvarieties.

Jeff Hicks (University of Cambridge)

Example: Tropical Pair of Pants

Consider the polyhedral domains in $Q = \mathbb{R}^2$



We call this and its embeddings into \mathbb{R}^n the *tropical pair of pants*.

Jeff Hicks (University of Cambridge)

Pair of pants, II

We consider a non-Archimedean valuation ring Λ with valuation val : $\Lambda^{\times} \to \mathbb{R} \cup \{\infty\}$. This gives a map trop_B : $\check{X}^{\Lambda} := (\Lambda^*)^2 \to Q = \mathbb{R}^2$.

Example

Consider the subscheme $\check{Y}_{pants} \subset (\Lambda^{\times})^2$ given by

$$\check{Y}_{pants} = \{(\check{z}_1,\check{z}_2) : 1 + \check{z}_1 + \check{z}_2 = 0.\}$$

 $\mathsf{val}(1+\check{z}_1+\check{z}_2) \geq \mathsf{min}(\mathsf{val}(1),\mathsf{val}(\check{z}_1),\mathsf{val}(\check{z}_2))$

$$\operatorname{val}(\check{z}_1) = \operatorname{val}(\check{z}_2)$$
 $\operatorname{val}(\check{z}_1) = \operatorname{val}(1)$ $\operatorname{val}(\check{z}_2) = \operatorname{val}(1)$

Jeff Hicks (University of Cambridge)

B-tropicalization

Theorem (Groves and Bieri 1984)

Let $\check{Y} \subset \check{X}^{\Lambda}$ be a k-dimensional subvariety. Then $trop_B(\check{Y})$ is a k-dimensional tropical subvariety.

For us, we only consider curves in \check{X}^{Λ} , whose tropicalizations are tropical curves.

B-realization problem

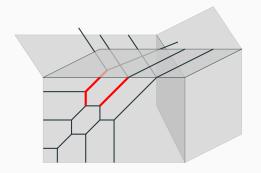
Question

When does $C \in Q$ arise as the tropicalization of $\check{Y} \subset \check{X}^{\Lambda}$?

- Nishinou, Siebert, et al. 2006 If C ⊂ Q is a tropical curve of genus 0, then C is realizable.
- Speyer 2007 If C ⊂ Q is a tropical curve of genus 1, and is well-spaced, then C is realizable.

Background: Complex to Tropical Correspondence

B-realization: a non-realizable curve



The cubic curve in \mathbb{CP}^3 has the property that it always lies inside of a plane. Therefore, this tropical curve is not realizable.

Geometric A-realization

Geometric Lagrangian Lift

Definition

A family of graded and spin Lagrangian submanifolds L_V^{ϵ} is a geometric Lagrangian lift of an unweighted tropical subvariety $V \subset Q$ if the following conditions hold:

- The Lagrangians L_V^ϵ are all Hamiltonian isotopic
- Over the affine portion of V,

$$L_V^\epsilon \setminus B_\epsilon(V^{(1)}) = (T^*V^{(0)}/T_\mathbb{Z}^*V^{(0)}) \setminus B_\epsilon(V^{(1)}).$$

In particular, syz $(L_V^{\epsilon}) \approx V$.

Jeff Hicks (University of Cambridge)

Existence of Geometric Lagrangian Lifts

Theorem (Matessi 2018; Mikhalkin 2019; Hicks 2020; Mak and Ruddat 2020)

Let $V \subset Q$ be a tropical curve. Then there exists a geometric Lagrangian lift L_V^{ϵ} of V.

Remark

We know how to build this lift for a large set of example of tropical varieties $V \subset Q$; for instance anything locally modelled on a hypersurface.

Is this A-realizability?

Notice that *every* tropical curve admits a geometric Lagrangian lift, while only a subset of them are *B*-realizable, suggesting that this is not the correct definition of "*A*-realizability".

Definition

We say that $V \subset Q$ is A-realizable if there exists a geometric Lagrangian lift L_V^{ϵ} , and furthermore L_V^{ϵ} is an *unobstructed Lagrangian* submanifold.

Unobstructedness is a criteria on the cancellation of holomorphic disks with boundary on L_V^{ϵ} .

Geometric A-realization

Examples of A-realizable curves

Example

Suppose that V is a tropical curve with a single vertex (at the origin). Then L_V^{ϵ} is unobstructed (monotone, and bounds no holomorphic disks).

Example

Suppose that V is a tropical curve in $Q = \mathbb{R}^2$. Then for generic J, L_V^{ϵ} bounds no holomorphic disks and is therefore unobstructed.

Examples of A-realizable tropical subvarieties

Example

Suppose that V is a compact genus zero tropical curve in Q, the SYZ base for mirror quintic-threefold (considered in Mak and Ruddat 2020). Then L_V^{ϵ} is a homology sphere, and therefore unobstructed by a criteria from Fukaya 2002.

Example

Suppose that $V \subset \mathbb{R}^n$ is a hypersurface. Then L_V^{ϵ} is unobstructed (Hicks 2020).

So, there are many examples of where we know that L_V^ϵ is unobstructed.

Jeff Hicks (University of Cambridge)

Summary of Known Results

V	<i>A</i> -model	<i>B</i> -model
Curves in \mathbb{R}^2	Hicks 2020	Mikhalkin 2005
Compact Genus 0 in $\dim(Q) = 3$	Mak and Ruddat 2020	Nishinou, Siebert, et al. 2006
Hypersurfaces of \mathbb{R}^n	Hicks 2020	Folklore
Genus 0 curves in \mathbb{R}^n	In Progress	Nishinou, Siebert, et al. 2006
Well-Spaced Genus 0	?	Speyer 2007

A-realizability to B-realizability

Theorem (In Progress)

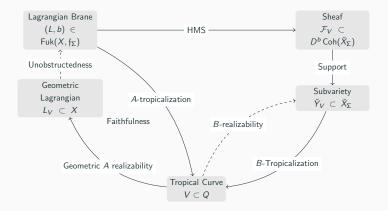
Suppose that V is A-realizable. Then V is B-realizable.

Example of an application of mirror symmetry from symplectic geometry to complex geometry.

Since many V have geometric Lagrangian lifts, this is really a statement about unobstructedness of that lift.

Jeff Hicks (University of Cambridge)

Outline of Proof



Definition

Let $(L, b) \in Fuk(X)$ be an admissible Lagrangian submanifold. The Floer theoretic support is

$$\mathsf{Supp}(L,b) := \{(F_q, \nabla) : HF^{ullet}((L,b), (F_q, \nabla)) \neq 0\}$$

The A-tropicalization is

$$\operatorname{trop}_{A}(L,b) := \{q \mid HF^{\bullet}((L,b),(F_{q},\nabla)) \neq 0\}.$$

This is computing the points on the mirror space contained in the support of the mirror sheaf.

Jeff Hicks (University of Cambridge)

Lemma (Support Lemma)

Let (L_V^{ϵ}, b) be the A-realization of V. Then

 $trop_A(L_V^{\epsilon}, b) = V.$

Lemma (HMS Lemma)

Let $(L, b) \in Fuk(X)$ be an admissible Lagrangian submanifold. Let \mathcal{F}_L be the mirror sheaf to L. Then

$$trop_A(L, b) = trop_B(Supp(\mathcal{F}_L)).$$

Support Lemma: Support contained within V

Because trop_A(L_V^{ϵ} , b) \subset syz(L_V^{ϵ}) and syz(L^{ϵ}) approximates V, we obtain trop_A(L_V^{ϵ} , b) $\subset V$.

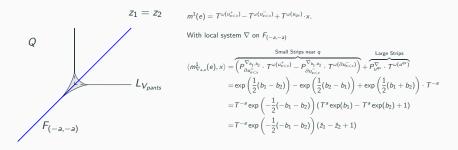
Jeff Hicks (University of Cambridge)

Support Lemma: V contained within support

For the reverse direction, we note that whenever $q \in V^{(0)}$, the Lagrangians L_V^{ϵ} and F_q intersect cleanly along a subtorus of F_q . So the Lagrangian intersection Floer cohomology is a deformation of $C^{\bullet}(T^k)$ (where $k = n - \dim(V)$).

Idea: Given any such deformation, we can find a local system on F_q exactly cancelling out the contribution to the differential from that deformation.

Example: Pair of Pants



$$Supp(L_{V_{pants}}^{\epsilon}) = \{ (\check{z}_1, \check{z}_2) : \check{z}_1 - \check{z}_2 + 1 = 0. \}$$

Applications

$Unobstructedness \Rightarrow Realizability$

Question

Do symplectic geometric interpretations of unobstructedness give us new insights into realizability?

V	<i>A</i> -model	<i>B</i> -model
Curves in \mathbb{R}^2	Hicks 2020	Mikhalkin 2005
Compact Genus 0 in $\dim(Q) = 3$	Mak and Ruddat 2020	Nishinou, Siebert, et al. 2006
Hypersurfaces of \mathbb{R}^n	Hicks 2020	Folklore
Genus 0 curves in \mathbb{R}^n	In Progress	Nishinou, Siebert, et al. 2006
Well-Spaced Genus 0	?	Speyer 2007

A symplectic proof of Genus-Zero Realizability

Lemma

Suppose V is genus zero. Then L_V^{ϵ} is unobstructed.

Idea of Proof for $V \in \mathbb{R}^3$.

The m^0 term for $CF^{\bullet}(L_V^{\epsilon})$ counts holomorphic disks with boundary on L_V^{ϵ} .

- In this dimension, the boundary of such disks are a class in $H_1(L_V^{\epsilon})$.
- Using $\chi(V) = 0$, we can show that $H_1(\partial L_V^{\epsilon})$ generates $H_1(\partial L_V^{\epsilon})$.
- This implies there exists a non-compact 2-chain p∂(b) with ∂p∂(b) = p∂(m⁰).

Next Steps

We've framed B-realizability in terms of the study of open Gromov-Witten invariant on the A model.

- Are there combinatorial methods to understand the OGW-invariants of tropical Lagrangian submanifolds?
- If so, do we recover new realizability criteria on the B-side?

A speculative Example

Theorem (Speyer 2007)

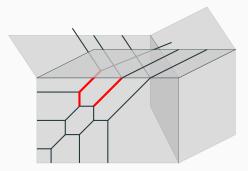
If the minimal distance from a cycle of a tropical elliptic curve to the non-planarity locus occurs at least twice, then the tropical curve is realizable.

Idea

If the minimal area of holomorphic disks with boundary on L_V^{ϵ} occurs at least twice, you stand a decent chance of being unobstructed.

Applications

Potential Application: Speyer's Realizability



References

- Fukaya, Kenji (2002). "Floer homology for families-a progress report". CONTEMPORARY MATHEMATICS 309, pp. 33-68.
- Groves, JRJ and Robert Bieri (1984). "The geometry of the set of characters iduced by valuations.".
- Hicks, Jeffrey (2020). "Tropical Lagrangian hypersurfaces are unobstructed". Journal of Topology 13.4, pp. 1409–1454.
- Kontsevich, Maxim (1995). "Homological algebra of mirror symmetry". Proceedings of the international congress of mathematicians. Springer, pp. 120–139.
- Mak, Cheuk Yu and Helge Ruddat (2020). "Tropically constructed Lagrangians in mirror quintic threefolds". Forum of Mathematics, Sigma. Vol. 8. Cambridge University Press.
- Matessi, Diego (2018). "Lagrangian pairs of pants". International Mathematics Research Notices.
- Mikhalkin, Grigory (2005). "Enumerative tropical algebraic geometry in \mathbb{R}^{2n} . Journal of the American Mathematical Society 18.2, pp. 313–377.
- (2019). "Examples of tropical-to-Lagrangian correspondence". European Journal of Mathematics 5.3, pp. 1033–1066.
- Nishinou, Takeo, Bernd Siebert, et al. (2006). "Toric degenerations of toric varieties and tropical curves". Duke Mathematical Journal 135.1, pp. 1–51.
- Speyer, David E (2007). "Uniformizing tropical curves I: genus zero and one". arXiv preprint arXiv:0711.2677.
- Strominger, Andrew, Shing-Tung Yau, and Eric Zaslow (1996). "Mirror symmetry is T-duality". Nuclear Physics B 479.1-2, pp. 243–259.
- Jeff Hicks (University of Cambridge)

