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Introduction



Introduction

Motivation

How do we realize algebraic relations in the Fukaya category in terms of
geometric relations between Lagrangian submanifolds?
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Introduction Exact isotopies and surgeries

Exact isotopy/homotopy

Geometric Relation:
Definition
Let it : L → X be a Lagrangian isotopy
(homotopy), so that i∗t (ω) = 0. We say
that this is an exact isotopy (homotopy)
if i∗t ω

(dit
dt ,−

)
is exact for all t.

Example
Suppose that the Lagrangians it(L) are
Hamiltonian isotopic. Then they are
exactly isotopic.

Algebraic Relation:
If L−, L+ are exactly isotopic, then they are
isomorphic objects in Fuk(X).
Sometimes this is true if L−, L+ are exactly
homotopic, but need to consider bounding
cochains.
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Introduction Exact isotopies and surgeries

Lagrangian Surgeries

Geometric Relation:
Polterovich connect sum of Lagrangians
L1, L2

L1 ∪ L2 =  = L1#L2

Audin, Lalonde, and Polterovich,Rizell and
Haug generalize to k-surgery.

L+ =  = L−

Algebraic Relation:
If L1, L2 intersect at a single point, then
L1#L2 ' cone(L2 → L1).
If L+ is immersed, we can sometimes give it
a bounding cochain to make it isomorphic
to L−.
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Introduction Lagrangian cobordisms

Geometric relation: Lagrangian Cobordisms

Definition (Arnol’d)
Let L− and L+ be Lagrangian
submanifolds of X . A two ended
Lagrangian cobordism K : L+  L− is a
Lagrangian in X × C with ends limiting
to L− × R�0 and L+ × R�0.

There is also a definition for cobordisms
with multiple ends K : (L1, . . . , Lk) L0.

KL− × R�0 L+ × R�0

C
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Introduction Lagrangian cobordisms

Example I: Suspension of Exact Homotopy

Let it : L → X be an exact Lagrangian
homotopy with primitive Ht : L → R sat-
isfying dHt = i∗t ω

(dit
dt ,−

)
, t ∈ [0, 1]. The

suspension cobordism

L × R ↪→X × C

(x , t) 7→(it(x), t +
√
−1Ht(x))

is a Lagrangian cobordism between i0(L)
and i1(L).

Ki0(L)× R�0 i1(L)× R�0

C
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Introduction Lagrangian cobordisms

Example II: Connect Sum and Cobordism

Let L1, L2 be Lagrangian submanifolds with
transverse intersection at a point x . There
is a surgery trace cobordism

K : (L1, L2) L1#xL2.

L2

L1

L1#xL2

C

Jeff Hicks (University of Edinburgh) Floer Theory and Lagrangian Cobordisms November 3, 2022 8 / 24



Introduction Lagrangian cobordisms

Algebraic Relations from Cobordisms

Work of Biran and Cornea; Nadler and
Tanaka show that monotone Lagrangian
cobordisms K : L  (L1, . . . Lk) give it-
erated exact sequences

[Lk → · · · → L1] ∼= L

As a specialization: if K : L+  L− is a
monotone Lagrangian cobordism, then:

0 → L+ → L− → 0.

Example
If L−, L+ are monotone and exactly
isotopic, then they are isomorphic.

Example
If L1, L2 are monotone and intersect
transversely at a single point x , then we
have an exact triangle
L2 → L1 → L1#xL2.
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Introduction Lagrangian cobordisms

Is Monotone Necessary?

Without any kind of conditions, Lagrangian cobordisms are too flexible

Example (H-Mak)
Suppose that embedded Lagrangian
submanifolds L−, L+ are Lagrangian
homotopic. Then there exists an
embedded Lagrangian cobordism
(possibly non-oriented) between L−, L+.

↑ ↑ ↑ ↑↑ ↑ ↑ ↑

We should only consider Lagrangians which are unobstructed (by bounding cochain).
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Applications of Lagrangian
cobordisms



Applications of Lagrangian cobordisms

Two Applications

Using Lagrangian cobordisms...
• ... to produce “nice” resolutions in the Fukaya category
• ... to identify isomorphic Lagrangian branes
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Applications of Lagrangian cobordisms Application I: Lagrangian cobordisms in Liouville domains

Constructing Exact Lagrangian cobordisms

Proposition (Hanlon-H)
Let (X , λ) be a Liouville domain, and L
be an exact Lagrangian submanifold
with primitive f : L → R. There exists
an exact Lagrangian cobordism
K : L (L1, . . . , Lk), where each Li is a
disjoint union of cocores.

Furthermore, let t1 < . . . < tk be the val-
ues of f (L ∩ LX ). Then

Li =
⋃

x∈f −1(ti )

cocore(x).

LX

LX

C

f

t

K

Jeff Hicks (University of Edinburgh) Floer Theory and Lagrangian Cobordisms November 3, 2022 12 / 24



Applications of Lagrangian cobordisms Application I: Lagrangian cobordisms in Liouville domains

Constructing Exact Lagrangian cobordisms

Proposition (Hanlon-H)
Let (X , λ) be a Liouville domain, and L
be an exact Lagrangian submanifold
with primitive f : L → R. There exists
an exact Lagrangian cobordism
K : L (L1, . . . , Lk), where each Li is a
disjoint union of cocores.

Furthermore, let t1 < . . . < tk be the val-
ues of f (L ∩ LX ). Then

Li =
⋃

x∈f −1(ti )

cocore(x).

LX LX

C

f

t

K

Jeff Hicks (University of Edinburgh) Floer Theory and Lagrangian Cobordisms November 3, 2022 12 / 24



Applications of Lagrangian cobordisms Application I: Lagrangian cobordisms in Liouville domains

Constructing Exact Lagrangian cobordisms

Proposition (Hanlon-H)
Let (X , λ) be a Liouville domain, and L
be an exact Lagrangian submanifold
with primitive f : L → R. There exists
an exact Lagrangian cobordism
K : L (L1, . . . , Lk), where each Li is a
disjoint union of cocores.

Furthermore, let t1 < . . . < tk be the val-
ues of f (L ∩ LX ). Then

Li =
⋃

x∈f −1(ti )

cocore(x).

LX LX

C

f

t

K

Jeff Hicks (University of Edinburgh) Floer Theory and Lagrangian Cobordisms November 3, 2022 12 / 24



Applications of Lagrangian cobordisms Application I: Lagrangian cobordisms in Liouville domains

Constructing Exact Lagrangian cobordisms

Proposition (Hanlon-H)
Let (X , λ) be a Liouville domain, and L
be an exact Lagrangian submanifold
with primitive f : L → R. There exists
an exact Lagrangian cobordism
K : L (L1, . . . , Lk), where each Li is a
disjoint union of cocores.

Furthermore, let t1 < . . . < tk be the val-
ues of f (L ∩ LX ). Then

Li =
⋃

x∈f −1(ti )

cocore(x).

LX LX

C

f

t

K

Jeff Hicks (University of Edinburgh) Floer Theory and Lagrangian Cobordisms November 3, 2022 12 / 24



Applications of Lagrangian cobordisms Application I: Lagrangian cobordisms in Liouville domains

Constructing Exact Lagrangian cobordisms

Given N ⊂ M a submanifold, use
f : N → R a Morse function
to define a perturbation of the
conormal bundle N∗

f N ⊂ T ∗M.

λ|N∗
f N =π∗df

f (N∗
f N ∩ M) =Critical values of f

Work of Bosshard gives extension
of Biran-Cornea to Liouville sec-
tors.

Corollary
Let N ⊂ M be a manifold. We can express N∗N
as ⊕

x∈f −1(tk)

T ∗
x M

 → · · · →

 ⊕
x∈f −1(t1)

T ∗
x M


where t1, . . . , tk are critical values of f .

A similar statement appears in [GPS18].
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Applications of Lagrangian cobordisms Application I: Lagrangian cobordisms in Liouville domains

Leveraging geometric generation

Definition
Let C be a category split-generated by
G ∈ C.
• The split-generation time UG(L) is

the minimum number of mapping
cones needed to express L ∈ C in
terms of sums, summands, and shifts
of G ∈ G.

• The Rouquier dimension of a
category is infG∈C supL∈C UG(L).

By applying the previous construction to
N∗∆ ⊂ T ∗(M × M)

Theorem (Hanlon-H-Lazarev, in
progress)

Rdim(W(T ∗M)) ≤
min

f :M→R Morse
# critical values of f .

The bound Rdim(W(T ∗M)) ≤ dim(M)

was observed by Bai and Côté
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Applications of Lagrangian cobordisms Application I: Lagrangian cobordisms in Liouville domains

HMS Application

A similar result can be proven about par-
tially wrapped Fukaya categories of cotan-
gent bundles. By applying homological mir-
ror symmetry for toric varieties:

Corollary
Let XΣ be a smooth projective toric
variety. Then the Rouquier dimension of
XΣ is dimC(XΣ).

Upshot: by looking at the geometry of the
Lagrangian cobordism, we can translate the
entire proof to the B-side.

Example: obtaining a resolution of an SYZ
fiber by Lagrangian sections in the mirror
to CP1.

↑ ↑

LΣ

O(0) O(−1)

x0

x1
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Applications of Lagrangian cobordisms Application I: Lagrangian cobordisms in Liouville domains

HMS Application

A similar result can be proven about par-
tially wrapped Fukaya categories of cotan-
gent bundles. By applying homological mir-
ror symmetry for toric varieties:

Corollary
Let XΣ be a smooth projective toric
variety. Then the Rouquier dimension of
XΣ is dimC(XΣ).

Upshot: by looking at the geometry of the
Lagrangian cobordism, we can translate the
entire proof to the B-side.

Example: Resolving Opt in CP2

O(0)

O(−1)

O(−1)

O(−1)

O(−1)

O(−2)

1

11

x2 x0

x2

x1

x0

x1

x2

x0

x1
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Applications of Lagrangian cobordisms Application II: Wall-crossing and Lagrangian Cobordisms

Example: Concatenating surgery with anti-surgery

×

C

×

C

×

C

C

K

×

C \ {−1}

T 2
chek,u,w

×

C \ {−1}

T 2
prod,x ,y

◦ ◦

Consider the Lefschetz fibration

W : C2 xy−→ C.

Consider the concatenation of the surgery
trace cobordisms for two thimbles.
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Applications of Lagrangian cobordisms Application II: Wall-crossing and Lagrangian Cobordisms

Example: Concatenating surgery with anti-surgery

×

C

×

C

×

C

C

K

×

C \ {−1}

T 2
chek,u,w

×

C \ {−1}

T 2
prod,x ,y

◦ ◦

The red loop is the boundary of a regu-
lar Maslov 0 holomorphic disk u. u (and
its multiple covers) are the only disks with
boundary on K for the standard choice of
almost complex structure.
We can find a non-compact 2-chain b0 ⊂ K
so that

∂u = ∂b0.
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Applications of Lagrangian cobordisms Application II: Wall-crossing and Lagrangian Cobordisms

Example: Concatenating surgery with anti-surgery

×

C

×

C

×

C

C

K

×

C \ {−1}

T 2
chek,u,w

×

C \ {−1}

T 2
prod,x ,y

◦ ◦

It follows that K has a bounding cochain
b whose lowest valuation term is Tω(u)b0.
If a multiple cover formula holds we can
compute the higher order terms.
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Applications of Lagrangian cobordisms Application II: Wall-crossing and Lagrangian Cobordisms

Example: Concatenating surgery with anti-surgery

×

C

×

C

×

C

C

K

×

C \ {−1}

T 2
chek,u,w

×

C \ {−1}

T 2
prod,x ,y

◦ ◦
We use this model to obtain an unob-
structed Lagrangian cobordism between
monotone product and Chekanov tori,

T 2
prod,x ,y ,T 2

chek,u,w ⊂ C2 \ {−xy = 1}

(K , b) : (T 2
chek,u,w , bchek,u,w ) (T 2

prod,x ,y , bprod,x ,y ).
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Applications of Lagrangian cobordisms Application II: Wall-crossing and Lagrangian Cobordisms

Example: Concatenating surgery with anti-surgery

×

C

×

C

×

C

C

K

×

C \ {−1}

T 2
chek,u,w

×

C \ {−1}

T 2
prod,x ,y

◦ ◦

MC(K)

MC(T 2
chek,u,w ) MC(T 2

prod,x ,y )

π−
∗ π+

∗

By interpreting the bounding cochains on
ends as a local systems we identify flux
charts on Chek/Prod tori by

(u,w) 7→ (u/(w − 1), uw/(w − 1)).

Matches Auroux wall-crossing formula.
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Decompositions and unobstructedness of Lagrangian cobordisms

Motivation

Want to understand...
• Under what conditions are cobordant

Lagrangians K : L+  L− equivalent
in the Fukaya category?

• Under these conditions, can we
recover the map
CF •(L+) → CF •(L−) from the
geometry/topology of K?

... for applications:
• In the generation example: exact

cobordisms give explicit resolutions of
the diagonal bimodule

• In the Chekanov/Product tori
example: unobstructed Lagrangians
identify Maurer-Cartan spaces under
wall-crossing transformation.

Strategy: Smooth cobordisms can be decomposed into standard pieces. We will decompose K
into standard pieces, and analyze each piece.
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Decompositions and unobstructedness of Lagrangian cobordisms

Lagrangian (k, n − k + 1) surgery trace (Audin, Lalonde, and Polterovich)

For 0 ≤ k ≤ n, the local Lagrangian (k, n − k + 1) surgery trace is the Lagrangian submanifold
Kk,n−k+1 ⊂ (C)n × C parameterized by jk,n−k+1 : Rn+1 → Cn × C

(x0, x1, . . . , xn) 7→
(
x1 +

√
−1σ1,k2x1x0, . . . , xn +

√
−1σn,k2xnx0, x2

0 +
∑n

i=1 σi,kx2
i −

√
−1x0

)
.

where σi,k = +1 if i ≤ k and −1 otherwise.
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Lagrangian (k, n − k + 1) surgery trace (Audin, Lalonde, and Polterovich)

For 0 ≤ k ≤ n, the local Lagrangian (k, n − k + 1) surgery trace is the Lagrangian submanifold
Kk,n−k+1 ⊂ (C)n × C parameterized by jk,n−k+1 : Rn+1 → Cn × C

(x0, x1, . . . , xn) 7→
(
x1 +

√
−1σ1,k2x1x0, . . . , xn +

√
−1σn,k2xnx0, x2

0 +
∑n

i=1 σi,kx2
i −

√
−1x0

)
.

where σi,k = +1 if i ≤ k and −1 otherwise.

In the top row: the surgery of 2
curves.
In the bottom row: the La-
grangian surgery trace projected
to the cobordism coordinate.

K0, 2
loc | 1 K0, 2

loc | 0.5 K0, 2
loc |0 K0, 2

loc |0.5 K0, 2
loc |1

1.0 0.5 0.0 0.5 1.0

2

1

0

1

2
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Decompositions and unobstructedness of Lagrangian cobordisms

Lagrangian (k, n − k + 1) surgery trace (Audin, Lalonde, and Polterovich)

For 0 ≤ k ≤ n, the local Lagrangian (k, n − k + 1) surgery trace is the Lagrangian submanifold
Kk,n−k+1 ⊂ (C)n × C parameterized by jk,n−k+1 : Rn+1 → Cn × C

(x0, x1, . . . , xn) 7→
(
x1 +

√
−1σ1,k2x1x0, . . . , xn +

√
−1σn,k2xnx0, x2

0 +
∑n

i=1 σi,kx2
i −

√
−1x0

)
.

where σi,k = +1 if i ≤ k and −1 otherwise.

We say that K : L+  L− is a (k, n − k + 1) surgery trace if there is a small neighborhood U
so that L+ ∩ U, L− ∩ U are the ends of the local surgery trace.
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Decompositions and unobstructedness of Lagrangian cobordisms

Lagrangian (k, n − k + 1) surgery trace (Audin, Lalonde, and Polterovich)

For 0 ≤ k ≤ n, the local Lagrangian (k, n − k + 1) surgery trace is the Lagrangian submanifold
Kk,n−k+1 ⊂ (C)n × C parameterized by jk,n−k+1 : Rn+1 → Cn × C

(x0, x1, . . . , xn) 7→
(
x1 +

√
−1σ1,k2x1x0, . . . , xn +

√
−1σn,k2xnx0, x2

0 +
∑n

i=1 σi,kx2
i −

√
−1x0

)
.

where σi,k = +1 if i ≤ k and −1 otherwise.

Two Lagrangian submanifolds
in T ∗R2, drawn as a col-
lection of covectors, differing
by Lagrangian (0, 3) surgery
(Polterovich surgery)

K0, 3
loc | 0.5 K0, 3

loc |0.5
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Decompositions and unobstructedness of Lagrangian cobordisms

Lagrangian (k, n − k + 1) surgery trace (Audin, Lalonde, and Polterovich)

For 0 ≤ k ≤ n, the local Lagrangian (k, n − k + 1) surgery trace is the Lagrangian submanifold
Kk,n−k+1 ⊂ (C)n × C parameterized by jk,n−k+1 : Rn+1 → Cn × C

(x0, x1, . . . , xn) 7→
(
x1 +

√
−1σ1,k2x1x0, . . . , xn +

√
−1σn,k2xnx0, x2

0 +
∑n

i=1 σi,kx2
i −

√
−1x0

)
.

where σi,k = +1 if i ≤ k and −1 otherwise.

Two Lagrangian submanifolds in
T ∗R2, drawn as a collection of
covectors, differing by Lagrangian
(1, 2) surgery. The surgery col-
lapses an isotropic immersed S1.

K1, 2
loc | 0.5 K1, 2

loc |0.5
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Decompositions and unobstructedness of Lagrangian cobordisms

Floer cochains of the surgery trace

When Kk,n−k+1 : L+  L− is a graded Lagrangian surgery
trace cobordism, there exist Morse functions

f ± : L± → R

agreeing away from the surgery neighborhood such that in-
side the surgery neighborhood, the critical points and self-
intersections have the following degrees

Index Self-Inter. of L+ Crit. pts. of f + Crit. pts. of f −

k + 1 (q+ → q−) x+
n − k − 1 (q− → q+) x−

x+

x−
L−

L+
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Decompositions and unobstructedness of Lagrangian cobordisms

Decompositions of Lagrangian cobordisms

Theorem (H)
Let K : L+  L− be a Lagrangian cobordism. K is exactly homotopic to the concatenation
of surgery trace cobordisms and suspensions of exact homotopies.

Immediate consequence if K is graded: χ(CF •(L−)) = χ(CF •(L+)).

Index Self-Inter. of L+ Crit. pts. of f + Crit. pts. of f −

k + 1 (q+ → q−) x+
n − k − 1 (q− → q+) x−

Does this extend to homotopy equivalence?
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Floer cohomology of surgery traces

Floer cochains of immersed surgery trace

In order to discuss the Floer cohomol-
ogy for Lagrangian cobordisms with
immersed ends, we need to apply a
small perturbation to the ends of the
Lagrangian cobordisms so that they
have transverse intersections (bottle-
neck trick, Mak and Wu).

BA

y

x+

x−

x+

x−
y

(q+, 0) → (q−, 0)
(q+, 1) → (q−, 1)

(q−, 0) → (q+, 0)
k + 2
k + 1

n − k − 1
n − k

Index

T B

1 T A

T A

m0 if k = 0

T A
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Floer cohomology of surgery traces

Floer cochains of immersed surgery trace

We take a Morse function for the
surgery trace which agrees with Re(z)
away from the ends of the Lagrangian
cobordism, and agrees with f ± over
the ends.

BA

y

x+

x−

x+

x−
y

(q+, 0) → (q−, 0)
(q+, 1) → (q−, 1)

(q−, 0) → (q+, 0)
k + 2
k + 1

n − k − 1
n − k

Index

T B

1 T A

T A

m0 if k = 0

T A
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Floer cohomology of surgery traces

Floer cochains of immersed surgery trace

We obtain the following Floer cochains
for K

BA

y

x+

x−

x+

x−
y

(q+, 0) → (q−, 0)
(q+, 1) → (q−, 1)

(q−, 0) → (q+, 0)
k + 2
k + 1

n − k − 1
n − k

Index

T B

1 T A

T A

m0 if k = 0

T A
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Floer cohomology of surgery traces

Floer cochains of immersed surgery trace

There is a strip of area B pairing the
left and right self-intersections.

B

A

y

x+

x−

x+

x−
y

(q+, 0) → (q−, 0)
(q+, 1) → (q−, 1)

(q−, 0) → (q+, 0)
k + 2
k + 1

n − k − 1
n − k

Index

T B

1 T A

T A

m0 if k = 0

T A
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Floer cohomology of surgery traces

Floer cochains of immersed surgery trace

There is an isolated Morse flow line
from x− and y .

B

A

y

x+

x−

x+

x−
y

(q+, 0) → (q−, 0)
(q+, 1) → (q−, 1)

(q−, 0) → (q+, 0)
k + 2
k + 1

n − k − 1
n − k

Index

T B

1

T A

T A

m0 if k = 0

T A
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Floer cohomology of surgery traces

Floer cochains of immersed surgery trace

Theorem (H)
There exist Floer trajectories from

x+ to ((q+, 0) → (q−, 0))
((q−, 0) → (q+, 0)) to y

arising from a holomorphic teardrop
of area A.

This suggests that chains on LHS and
RHS are cohomologically identified.
(Warning: valuations!)

BAy

x+

x−

x+

x−
y

(q+, 0) → (q−, 0)
(q+, 1) → (q−, 1)

(q−, 0) → (q+, 0)
k + 2
k + 1

n − k − 1
n − k

Index

T B

1 T A

T A

m0 if k = 0

T A
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Floer cohomology of surgery traces

Floer cochains of immersed surgery trace

When k = 0 (setting of Polterovich
surgery), the teardrop is isolated, con-
tributing to an m0 term

T A · ((q+, 0) → (q−, 0)).

When B < A,

T A−B · ((q+, 1) → (q−, 1))

is a candidate bounding cochain.

BAy
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Floer cohomology of surgery traces

Speculation

We expect that there are filtered A∞ pro-
jections from the Floer A∞ algebra of a La-
grangian cobordism to those of the ends.

CF •(Kk,n−k+1
A,B )

CF •(L−) CF •(L+)
π−

i−

π+
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Floer cohomology of surgery traces

Speculation

Previous discussion suggests: there exists
a weakly filtered map of curved A∞ alge-
bras i− : CF •(L−) → CF •(Kk,n−k+1) so
that i− ◦ π− is weakly filtered homotopic
to the identity.

Constructing a bound-
ing cochain for Kk,n−k+1

A,B now becomes of
game of finding bounding cochains for L−

whose pushforward along i− is well defined.

CF •(Kk,n−k+1
A,B )

CF •(L−) CF •(L+)
π−

i−
π+
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Floer cohomology of surgery traces

Speculation: return to Chekanov and Product tori

Bounding cochain: Recall that we had a La-
grangian cobordism between the Chekanov
and Product type tori in C2 \ {xy = −1}.
The ends of this Lagrangian cobordism,
when equipped with appropriate local sys-
tems, are isomorphic objects in the Fukaya
category

C

K

××◦ ◦

C \ {−1} C \ {−1}
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Floer cohomology of surgery traces

Speculation: return to Chekanov and Product tori

MC(K)

MC(T 2
chek,u,w ) MC(T 2

prod,x ,y )

π−
∗ π+

∗

C

K

××◦ ◦

C \ {−1} C \ {−1}
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Floer cohomology of surgery traces

Speculation: return to Chekanov and Product tori

Bounding cochain: We apply the cobor-
dism decomposition result, giving an im-
mersed Lagrangian cobordism which is the
concatenation of a surgery, exact homo-
topy, and anti-surgery. Since B < A,
we can find a bounding cochain can-
celling the contribution from the holomor-
phic teardrop. C

K

××◦ ◦

A AB

C \ {−1} C \ {−1}
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Floer cohomology of surgery traces

Speculation: return to Chekanov and Product tori

MC(K1)

MC(T 2
chek,u,w ) MC(S2

whit)

π−
∗ π+

∗

MC(K2)

MC(T 2
prod,x ,y )

π−
∗ π+

∗

There exists bounding cochains b1 ∈
MC(K1), b2 ∈ MC(K2) so that

π+
∗ (b1) = π−

∗ (b2).
C

K

××◦ ◦

A AB

C \ {−1} C \ {−1}
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Floer cohomology of surgery traces

Speculation: return to Chekanov and Product tori

No Bounding cochain: If we sweep out
more flux over the exact homotopy, the
ends of the Lagrangian cobordism can be
disjoined (and in particular are not isomor-
phic!). In this setting, B ≥ A, and it is not
possible to find a bounding cochain can-
celling the m0 term arising from the count
of teardrops. C

K

××◦ ◦

A AB

C \ {−1} C \ {−1}
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Floer cohomology of surgery traces

Speculation: return to Chekanov and Product tori

MC(K1)

MC(T 2
chek,u′,w ′) MC(S2

whit)

π−
∗ π+

∗

MC(K2)

MC(T 2
prod,x ,y )

π−
∗ π+

∗

There are no bounding cochains b1 ∈
MC(K1), b2 ∈ MC(K2) so that

π+
∗ (b1) = π−

∗ (b2). C

K

××◦ ◦

A AB

C \ {−1} C \ {−1}
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