Floer Theory and Lagrangian Cobordisms

Jeff Hicks

November 3, 2022

University of Edinburgh

Summary

Introduction

Applications of Lagrangian cobordisms

Decompositions and unobstructedness of Lagrangian cobordisms

Floer cohomology of surgery traces

Introduction

Motivation

How do we realize algebraic relations in the Fukaya category in terms of geometric relations between Lagrangian submanifolds?

Geometric Relation:

Definition

Let $i_t:L\to X$ be a Lagrangian isotopy (homotopy), so that $i_t^*(\omega)=0$. We say that this is an exact isotopy (homotopy) if $i_t^*\omega\left(\frac{di_t}{dt},-\right)$ is exact for all t.

Geometric Relation:

Definition

Let $i_t:L\to X$ be a Lagrangian isotopy (homotopy), so that $i_t^*(\omega)=0$. We say that this is an exact isotopy (homotopy) if $i_t^*\omega\left(\frac{di_t}{dt},-\right)$ is exact for all t.

Example

Suppose that the Lagrangians $i_t(L)$ are Hamiltonian isotopic. Then they are exactly isotopic.

Geometric Relation:

Definition

Let $i_t:L\to X$ be a Lagrangian isotopy (homotopy), so that $i_t^*(\omega)=0$. We say that this is an exact isotopy (homotopy) if $i_t^*\omega\left(\frac{di_t}{dt},-\right)$ is exact for all t.

Example

Suppose that the Lagrangians $i_t(L)$ are Hamiltonian isotopic. Then they are exactly isotopic.

Algebraic Relation:

If L^- , L^+ are exactly isotopic, then they are isomorphic objects in Fuk(X).

Geometric Relation:

Definition

Let $i_t:L\to X$ be a Lagrangian isotopy (homotopy), so that $i_t^*(\omega)=0$. We say that this is an exact isotopy (homotopy) if $i_t^*\omega\left(\frac{di_t}{dt},-\right)$ is exact for all t.

Example

Suppose that the Lagrangians $i_t(L)$ are Hamiltonian isotopic. Then they are exactly isotopic.

Algebraic Relation:

If L^- , L^+ are exactly isotopic, then they are isomorphic objects in Fuk(X).

Sometimes this is true if L^- , L^+ are exactly homotopic, but need to consider bounding cochains

Geometric Relation:

Polterovich connect sum of Lagrangians L^1, L^2

$$L^1 \cup L^2 = (1 + L^2)$$

Geometric Relation:

Polterovich connect sum of Lagrangians L^1, L^2

$$L^1 \cup L^2 = (1 + L^2)$$

Audin, Lalonde, and Polterovich, Rizell and Haug generalize to k-surgery.

$$L^{+} = (1 + 1) \longrightarrow (1 + 1$$

Geometric Relation:

Polterovich connect sum of Lagrangians L^1, L^2

$$L^1 \cup L^2 = (1 + L^2)$$

Audin, Lalonde, and Polterovich, Rizell and Haug generalize to k-surgery.

$$L^{+} = (1 + 1) \longrightarrow (1 + 1$$

Algebraic Relation:

If L^1, L^2 intersect at a single point, then $L^1 \# L^2 \simeq \text{cone}(L^2 \to L^1)$.

Geometric Relation:

Polterovich connect sum of Lagrangians L^1, L^2

$$L^1 \cup L^2 = (1 + L^2)$$

Audin, Lalonde, and Polterovich, Rizell and Haug generalize to k-surgery.

$$L^{+} = (1 + 1) \longrightarrow (1 + 1$$

Algebraic Relation:

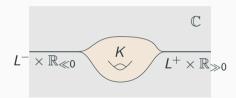
If L^1, L^2 intersect at a single point, then $L^1 \# L^2 \simeq \text{cone}(L^2 \to L^1)$.

If L^+ is immersed, we can sometimes give it a bounding cochain to make it isomorphic to L^- .

Geometric relation: Lagrangian Cobordisms

Definition (Arnol'd)

Let L^- and L^+ be Lagrangian submanifolds of X. A two ended Lagrangian cobordism $K:L^+\leadsto L^-$ is a Lagrangian in $X\times\mathbb{C}$ with ends limiting to $L^-\times\mathbb{R}_{\ll 0}$ and $L^+\times\mathbb{R}_{\gg 0}$.

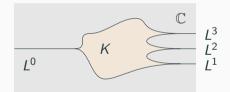


Geometric relation: Lagrangian Cobordisms

Definition (Arnol'd)

Let L^- and L^+ be Lagrangian submanifolds of X. A two ended Lagrangian cobordism $K:L^+\leadsto L^-$ is a Lagrangian in $X\times\mathbb{C}$ with ends limiting to $L^-\times\mathbb{R}_{\ll 0}$ and $L^+\times\mathbb{R}_{\gg 0}$.

There is also a definition for cobordisms with multiple ends $K:(L^1,\ldots,L^k)\leadsto L^0$.



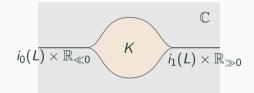
Example I: Suspension of Exact Homotopy

Let $i_t:L\to X$ be an exact Lagrangian homotopy with primitive $H_t:L\to\mathbb{R}$ satisfying $dH_t=i_t^*\omega\left(\frac{di_t}{dt},-\right)$, $t\in[0,1]$. The suspension cobordism

$$L \times \mathbb{R} \hookrightarrow X \times \mathbb{C}$$

 $(x, t) \mapsto (i_t(x), t + \sqrt{-1}H_t(x))$

is a Lagrangian cobordism between $i_0(L)$ and $i_1(L)$.



Example II: Connect Sum and Cobordism

Let L^1, L^2 be Lagrangian submanifolds with transverse intersection at a point x. There is a *surgery trace cobordism*

$$K: (L^1, L^2) \rightsquigarrow L^1 \#_{\times} L^2.$$

Work of Biran and Cornea; Nadler and Tanaka show that *monotone* Lagrangian cobordisms $K: L \rightsquigarrow (L^1, \dots L^k)$ give iterated exact sequences

$$[L^k \to \cdots \to L^1] \cong L$$

Work of Biran and Cornea; Nadler and Tanaka show that *monotone* Lagrangian cobordisms $K:L\rightsquigarrow (L^1,\ldots L^k)$ give iterated exact sequences

$$[L^k \to \cdots \to L^1] \cong L$$

As a specialization: if $K: L^+ \leadsto L^-$ is a monotone Lagrangian cobordism, then:

$$0 \rightarrow L^+ \rightarrow L^- \rightarrow 0$$
.

9/24

Work of Biran and Cornea; Nadler and Tanaka show that *monotone* Lagrangian cobordisms $K: L \rightsquigarrow (L^1, \ldots L^k)$ give iterated exact sequences

$$[L^k \to \cdots \to L^1] \cong L$$

As a specialization: if $K: L^+ \leadsto L^-$ is a monotone Lagrangian cobordism, then:

$$0 \rightarrow L^+ \rightarrow L^- \rightarrow 0$$
.

Example

If L^-, L^+ are monotone and exactly isotopic, then they are isomorphic.

Work of Biran and Cornea; Nadler and Tanaka show that *monotone* Lagrangian cobordisms $K: L \leadsto (L^1, \ldots L^k)$ give iterated exact sequences

$$[L^k \to \cdots \to L^1] \cong L$$

As a specialization: if $K: L^+ \leadsto L^-$ is a monotone Lagrangian cobordism, then:

$$0 \rightarrow L^+ \rightarrow L^- \rightarrow 0$$
.

Example

If L^-, L^+ are monotone and exactly isotopic, then they are isomorphic.

Example

If L^1 , L^2 are monotone and intersect transversely at a single point x, then we have an exact triangle $L^2 \to L^1 \to L^1 \#_{\times} L^2$.

Is Monotone Necessary?

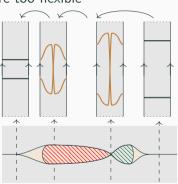
Without any kind of conditions, Lagrangian cobordisms are too flexible

Is Monotone Necessary?

Without any kind of conditions, Lagrangian cobordisms are too flexible

Example (H-Mak)

Suppose that embedded Lagrangian submanifolds L^- , L^+ are Lagrangian homotopic. Then there exists an embedded Lagrangian cobordism (possibly non-oriented) between L^- , L^+ .

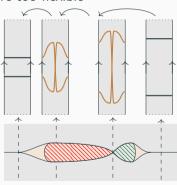


Is Monotone Necessary?

Without any kind of conditions, Lagrangian cobordisms are too flexible

Example (H-Mak)

Suppose that embedded Lagrangian submanifolds L^- , L^+ are Lagrangian homotopic. Then there exists an embedded Lagrangian cobordism (possibly non-oriented) between L^- , L^+ .



We should only consider Lagrangians which are unobstructed (by bounding cochain).

Applications of Lagrangian

cobordisms

Two Applications

Using Lagrangian cobordisms...

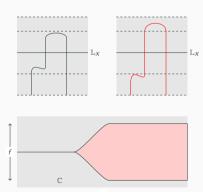
- ... to produce "nice" resolutions in the Fukaya category
- ... to identify isomorphic Lagrangian branes

Proposition (Hanlon-H)

Let (X, λ) be a Liouville domain, and L be an exact Lagrangian submanifold with primitive $f: L \to \mathbb{R}$. There exists an exact Lagrangian cobordism $K: L \leadsto (L^1, \ldots, L^k)$, where each L^i is a disjoint union of cocores.

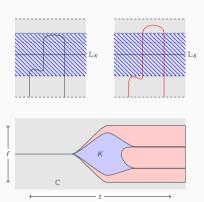
Proposition (Hanlon-H)

Let (X, λ) be a Liouville domain, and L be an exact Lagrangian submanifold with primitive $f: L \to \mathbb{R}$. There exists an exact Lagrangian cobordism $K: L \leadsto (L^1, \ldots, L^k)$, where each L^i is a disjoint union of cocores.



Proposition (Hanlon-H)

Let (X, λ) be a Liouville domain, and L be an exact Lagrangian submanifold with primitive $f: L \to \mathbb{R}$. There exists an exact Lagrangian cobordism $K: L \leadsto (L^1, \ldots, L^k)$, where each L^i is a disjoint union of cocores.

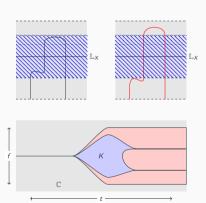


Proposition (Hanlon-H)

Let (X, λ) be a Liouville domain, and L be an exact Lagrangian submanifold with primitive $f: L \to \mathbb{R}$. There exists an exact Lagrangian cobordism $K: L \leadsto (L^1, \ldots, L^k)$, where each L^i is a disjoint union of cocores.

Furthermore, let $t_1 < \ldots < t_k$ be the values of $f(L \cap \mathbb{L}_X)$. Then

$$L^i = \bigcup_{x \in f^{-1}(t_i)} \operatorname{cocore}(x).$$



Given $N \subset M$ a submanifold, use $f: N \to \mathbb{R}$ a Morse function to define a perturbation of the conormal bundle $N_f^*N \subset T^*M$.

$$\lambda|_{N_f^*N} = \pi^* df$$

 $f(N_f^*N\cap M)$ =Critical values of f

Work of Bosshard gives extension of Biran-Cornea to Liouville sectors.

Given $N \subset M$ a submanifold, use $f: N \to \mathbb{R}$ a Morse function to define a perturbation of the conormal bundle $N_f^*N \subset T^*M$.

$$\lambda|_{N_f^*N} = \pi^* df$$
 $f(N_f^*N \cap M) = \text{Critical values of } f$

Work of Bosshard gives extension of Biran-Cornea to Liouville sectors.

Corollary

Let $N \subset M$ be a manifold. We can express N^*N

$$\left[\left(\bigoplus_{x\in f^{-1}(t_k)}T_x^*M\right)\to\cdots\to\left(\bigoplus_{x\in f^{-1}(t_1)}T_x^*M\right)\right]$$

where t_1, \ldots, t_k are critical values of f.

Given $N \subset M$ a submanifold, use $f: N \to \mathbb{R}$ a Morse function to define a perturbation of the conormal bundle $N_f^*N \subset T^*M$.

$$\lambda|_{N_f^*N} = \pi^* df$$
 $f(N_f^*N \cap M) = \text{Critical values of } f$

Work of Bosshard gives extension of Biran-Cornea to Liouville sectors.

Corollary

Let $N \subset M$ be a manifold. We can express N^*N

$$\left[\left(\bigoplus_{x \in f^{-1}(t_k)} \mathcal{T}_x^* M \right) \to \cdots \to \left(\bigoplus_{x \in f^{-1}(t_1)} \mathcal{T}_x^* M \right) \right]$$

where t_1, \ldots, t_k are critical values of f.

A similar statement appears in [GPS18].

Leveraging geometric generation

Definition

Let $\mathcal C$ be a category split-generated by $G \in \mathcal C$.

- The split-generation time $\mathfrak{S}_G(L)$ is the minimum number of mapping cones needed to express $L \in \mathcal{C}$ in terms of sums, summands, and shifts of $G \in \mathcal{G}$.
- The Rouquier dimension of a category is $\inf_{G \in \mathcal{C}} \sup_{L \in \mathcal{C}} \mathfrak{S}_G(L)$.

Leveraging geometric generation

Definition

Let $\mathcal C$ be a category split-generated by $G\in\mathcal C$.

- The split-generation time $\mathfrak{S}_G(L)$ is the minimum number of mapping cones needed to express $L \in \mathcal{C}$ in terms of sums, summands, and shifts of $G \in \mathcal{G}$.
- The Rouquier dimension of a category is $\inf_{G \in \mathcal{C}} \sup_{L \in \mathcal{C}} \mathfrak{S}_G(L)$.

By applying the previous construction to $N^*\Delta \subset T^*(M \times M)$

Theorem (Hanlon-H-Lazarev, in progress)

$$extit{Rdim}(\mathcal{W}(T^*M)) \leq \min_{f:M o \mathbb{R} \ extit{Morse}} \ \# \ extit{critical values of } f.$$

Leveraging geometric generation

Definition

Let $\mathcal C$ be a category split-generated by $G \in \mathcal C$.

- The split-generation time $\mathfrak{S}_G(L)$ is the minimum number of mapping cones needed to express $L \in \mathcal{C}$ in terms of sums, summands, and shifts of $G \in \mathcal{G}$.
- The Rouquier dimension of a category is $\inf_{G \in \mathcal{C}} \sup_{L \in \mathcal{C}} \mathfrak{S}_G(L)$.

By applying the previous construction to $N^*\Delta \subset T^*(M \times M)$

Theorem (Hanlon-H-Lazarev, in progress)

$$Rdim(\mathcal{W}(T^*M)) \leq \min_{f:M \to \mathbb{R} \ \textit{Morse}} \# \ \textit{critical values of } f.$$

The bound $\operatorname{Rdim}(\mathcal{W}(T^*M)) \leq \operatorname{dim}(M)$ was observed by Bai and Côté

HMS Application

A similar result can be proven about partially wrapped Fukaya categories of cotangent bundles. By applying homological mirror symmetry for toric varieties:

Corollary

Let X_{Σ} be a smooth projective toric variety. Then the Rouquier dimension of X_{Σ} is $\dim_{\mathbb{C}}(X_{\Sigma})$.

A similar result can be proven about partially wrapped Fukaya categories of cotangent bundles. By applying homological mirror symmetry for toric varieties:

Corollary

Let X_{Σ} be a smooth projective toric variety. Then the Rouquier dimension of X_{Σ} is $\dim_{\mathbb{C}}(X_{\Sigma})$.

Upshot: by looking at the geometry of the Lagrangian cobordism, we can translate the entire proof to the *B*-side.

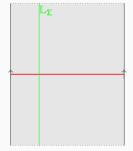
A similar result can be proven about partially wrapped Fukaya categories of cotangent bundles. By applying homological mirror symmetry for toric varieties:

Corollary

Let X_{Σ} be a smooth projective toric variety. Then the Rouquier dimension of X_{Σ} is $\dim_{\mathbb{C}}(X_{\Sigma})$.

Upshot: by looking at the geometry of the Lagrangian cobordism, we can translate the entire proof to the *B*-side.

Example: obtaining a resolution of an SYZ fiber by Lagrangian sections in the mirror to \mathbb{CP}^1 .



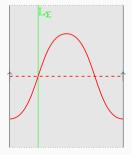
A similar result can be proven about partially wrapped Fukaya categories of cotangent bundles. By applying homological mirror symmetry for toric varieties:

Corollary

Let X_{Σ} be a smooth projective toric variety. Then the Rouquier dimension of X_{Σ} is $\dim_{\mathbb{C}}(X_{\Sigma})$.

Upshot: by looking at the geometry of the Lagrangian cobordism, we can translate the entire proof to the *B*-side.

Example: obtaining a resolution of an SYZ fiber by Lagrangian sections in the mirror to \mathbb{CP}^1 .



November 3, 2022

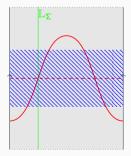
A similar result can be proven about partially wrapped Fukaya categories of cotangent bundles. By applying homological mirror symmetry for toric varieties:

Corollary

Let X_{Σ} be a smooth projective toric variety. Then the Rouquier dimension of X_{Σ} is $\dim_{\mathbb{C}}(X_{\Sigma})$.

Upshot: by looking at the geometry of the Lagrangian cobordism, we can translate the entire proof to the *B*-side.

Example: obtaining a resolution of an SYZ fiber by Lagrangian sections in the mirror to \mathbb{CP}^1 .



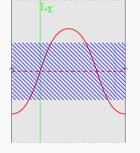
A similar result can be proven about partially wrapped Fukaya categories of cotangent bundles. By applying homological mirror symmetry for toric varieties:

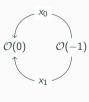
Corollary

Let X_{Σ} be a smooth projective toric variety. Then the Rouquier dimension of X_{Σ} is $\dim_{\mathbb{C}}(X_{\Sigma})$.

Upshot: by looking at the geometry of the Lagrangian cobordism, we can translate the entire proof to the *B*-side.

Example: obtaining a resolution of an SYZ fiber by Lagrangian sections in the mirror to \mathbb{CP}^1 .





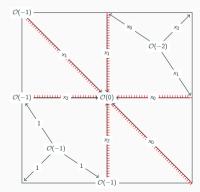
A similar result can be proven about partially wrapped Fukaya categories of cotangent bundles. By applying homological mirror symmetry for toric varieties:

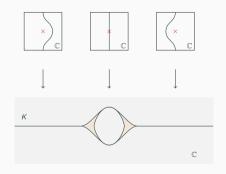
Corollary

Let X_{Σ} be a smooth projective toric variety. Then the Rouquier dimension of X_{Σ} is $\dim_{\mathbb{C}}(X_{\Sigma})$.

Upshot: by looking at the geometry of the Lagrangian cobordism, we can translate the entire proof to the *B*-side.

Example: Resolving \mathcal{O}_{pt} in \mathbb{CP}^2

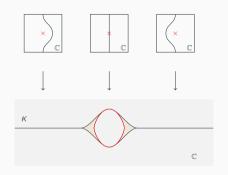




Consider the Lefschetz fibration

$$W: \mathbb{C}^2 \xrightarrow{xy} \mathbb{C}.$$

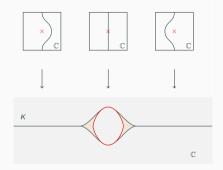
Consider the concatenation of the surgery trace cobordisms for two thimbles.



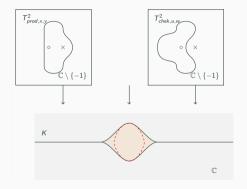
The red loop is the boundary of a regular Maslov 0 holomorphic disk u. u (and its multiple covers) are the only disks with boundary on K for the standard choice of almost complex structure.

We can find a non-compact 2-chain $b_0 \subset K$ so that

$$\partial u = \partial b_0$$
.



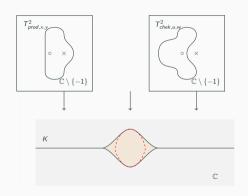
It follows that K has a bounding cochain b whose lowest valuation term is $T^{\omega(u)}b_0$. If a multiple cover formula holds we can compute the higher order terms.



We use this model to obtain an *unob-structed* Lagrangian cobordism between monotone product and Chekanov tori,

$$T^2_{prod.x,y}, T^2_{chek.u,w} \subset \mathbb{C}^2 \setminus \{-xy = 1\}$$

$$(K,b): (T^2_{chek,u,w}, b_{chek,u,w}) \rightsquigarrow (T^2_{prod,x,y}, b_{prod,x,y}).$$



$$\mathcal{MC}(\mathcal{K})$$
 $\pi_*^- \left(\begin{array}{c} \pi_*^+ \\ \mathcal{MC}(T_{chek,u,w}^2) \end{array} \right)$
 $\mathcal{MC}(T_{prod,x,y}^2)$

By interpreting the bounding cochains on ends as a local systems we identify flux charts on Chek/Prod tori by

$$(u, w) \mapsto (u/(w-1), uw/(w-1)).$$

Matches Auroux wall-crossing formula.

Decompositions and

cobordisms

unobstructedness of Lagrangian

Motivation

Want to understand...

- Under what conditions are cobordant Lagrangians $K: L^+ \leadsto L^-$ equivalent in the Fukaya category?
 - Under these conditions, can we recover the map $CF^{\bullet}(L^+) \to CF^{\bullet}(L^-)$ from the geometry/topology of K?

Motivation

Want to understand...

- Under what conditions are cobordant Lagrangians K: L⁺ → L⁻ equivalent in the Fukaya category?
- Under these conditions, can we recover the map
 CF[•](L⁺) → CF[•](L⁻) from the geometry/topology of K?

... for applications:

- In the generation example: exact cobordisms give explicit resolutions of the diagonal bimodule
- In the Chekanov/Product tori example: unobstructed Lagrangians identify Maurer-Cartan spaces under wall-crossing transformation.

Motivation

Want to understand...

- Under what conditions are cobordant Lagrangians K: L⁺ → L⁻ equivalent in the Fukaya category?
- Under these conditions, can we recover the map $CF^{\bullet}(L^+) \to CF^{\bullet}(L^-)$ from the geometry/topology of K?

... for applications:

- In the generation example: exact cobordisms give explicit resolutions of the diagonal bimodule
- In the Chekanov/Product tori example: unobstructed Lagrangians identify Maurer-Cartan spaces under wall-crossing transformation.

Strategy: Smooth cobordisms can be decomposed into standard pieces. We will decompose K into standard pieces, and analyze each piece.

For $0 \le k \le n$, the local Lagrangian (k, n-k+1) surgery trace is the Lagrangian submanifold $K^{k,n-k+1} \subset (\mathbb{C})^n \times \mathbb{C}$ parameterized by $j^{k,n-k+1} : \mathbb{R}^{n+1} \to \mathbb{C}^n \times \mathbb{C}$

$$(x_0, x_1, \ldots, x_n) \mapsto (x_1 + \sqrt{-1}\sigma_{1,k}2x_1x_0, \ldots, x_n + \sqrt{-1}\sigma_{n,k}2x_nx_0, x_0^2 + \sum_{i=1}^n \sigma_{i,k}x_i^2 - \sqrt{-1}x_0).$$

where $\sigma_{i,k} = +1$ if $i \leq k$ and -1 otherwise.

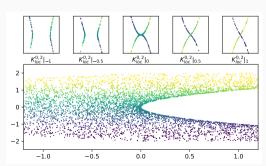
For $0 \le k \le n$, the local Lagrangian (k, n-k+1) surgery trace is the Lagrangian submanifold $K^{k,n-k+1} \subset (\mathbb{C})^n \times \mathbb{C}$ parameterized by $j^{k,n-k+1} : \mathbb{R}^{n+1} \to \mathbb{C}^n \times \mathbb{C}$

$$(x_0, x_1, \ldots, x_n) \mapsto (x_1 + \sqrt{-1}\sigma_{1,k}2x_1x_0, \ldots, x_n + \sqrt{-1}\sigma_{n,k}2x_nx_0, x_0^2 + \sum_{i=1}^n \sigma_{i,k}x_i^2 - \sqrt{-1}x_0).$$

where $\sigma_{i,k} = +1$ if $i \leq k$ and -1 otherwise.

In the top row: the surgery of 2 curves.

In the bottom row: the Lagrangian surgery trace projected to the cobordism coordinate.



For $0 \le k \le n$, the local Lagrangian (k, n-k+1) surgery trace is the Lagrangian submanifold $K^{k,n-k+1} \subset (\mathbb{C})^n \times \mathbb{C}$ parameterized by $j^{k,n-k+1} : \mathbb{R}^{n+1} \to \mathbb{C}^n \times \mathbb{C}$

$$(x_0, x_1, \ldots, x_n) \mapsto (x_1 + \sqrt{-1}\sigma_{1,k}2x_1x_0, \ldots, x_n + \sqrt{-1}\sigma_{n,k}2x_nx_0, x_0^2 + \sum_{i=1}^n \sigma_{i,k}x_i^2 - \sqrt{-1}x_0).$$

where $\sigma_{i,k} = +1$ if $i \leq k$ and -1 otherwise.

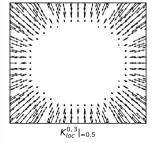
We say that $K: L^+ \leadsto L^-$ is a (k, n-k+1) surgery trace if there is a small neighborhood U so that $L^+ \cap U, L^- \cap U$ are the ends of the local surgery trace.

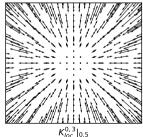
For $0 \le k \le n$, the local Lagrangian (k, n-k+1) surgery trace is the Lagrangian submanifold $K^{k,n-k+1} \subset (\mathbb{C})^n \times \mathbb{C}$ parameterized by $j^{k,n-k+1} : \mathbb{R}^{n+1} \to \mathbb{C}^n \times \mathbb{C}$

$$(x_0, x_1, \ldots, x_n) \mapsto (x_1 + \sqrt{-1}\sigma_{1,k}2x_1x_0, \ldots, x_n + \sqrt{-1}\sigma_{n,k}2x_nx_0, x_0^2 + \sum_{i=1}^n \sigma_{i,k}x_i^2 - \sqrt{-1}x_0).$$

where $\sigma_{i,k} = +1$ if $i \leq k$ and -1 otherwise.

Two Lagrangian submanifolds in $T^*\mathbb{R}^2$, drawn as a collection of covectors, differing by Lagrangian (0,3) surgery (Polterovich surgery)



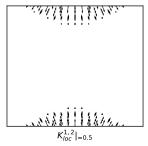


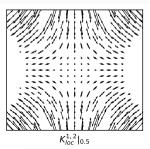
For $0 \le k \le n$, the local Lagrangian (k, n-k+1) surgery trace is the Lagrangian submanifold $K^{k,n-k+1} \subset (\mathbb{C})^n \times \mathbb{C}$ parameterized by $j^{k,n-k+1} : \mathbb{R}^{n+1} \to \mathbb{C}^n \times \mathbb{C}$

$$(x_0, x_1, \ldots, x_n) \mapsto (x_1 + \sqrt{-1}\sigma_{1,k}2x_1x_0, \ldots, x_n + \sqrt{-1}\sigma_{n,k}2x_nx_0, x_0^2 + \sum_{i=1}^n \sigma_{i,k}x_i^2 - \sqrt{-1}x_0).$$

where $\sigma_{i,k} = +1$ if $i \leq k$ and -1 otherwise.

Two Lagrangian submanifolds in $T^*\mathbb{R}^2$, drawn as a collection of covectors, differing by Lagrangian (1,2) surgery. The surgery collapses an isotropic immersed S^1 .





Floer Theory and Lagrangian Cobordisms

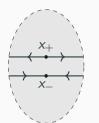
Floer cochains of the surgery trace

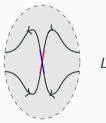
When $K^{k,n-k+1}: L^+ \leadsto L^-$ is a graded Lagrangian surgery trace cobordism, there exist Morse functions

$$f^{\pm}:L^{\pm}\to\mathbb{R}$$

agreeing away from the surgery neighborhood such that inside the surgery neighborhood, the critical points and self-intersections have the following degrees

Index	Self-Inter. of L^+	Crit. pts. of f^+	Crit. pts. of f^-
k+1	$(q_+ ightarrow q)$		<i>x</i> ₊
n-k-1	$(q ightarrow q_+)$		X_





Theorem (H)

Let $K: L^+ \leadsto L^-$ be a Lagrangian cobordism. K is exactly homotopic to the concatenation of surgery trace cobordisms and suspensions of exact homotopies.

Theorem (H)

Let $K: L^+ \leadsto L^-$ be a Lagrangian cobordism. K is exactly homotopic to the concatenation of surgery trace cobordisms and suspensions of exact homotopies.

Immediate consequence if K is graded: $\chi(CF^{\bullet}(L^{-})) = \chi(CF^{\bullet}(L^{+}))$.

Theorem (H)

Let $K: L^+ \leadsto L^-$ be a Lagrangian cobordism. K is exactly homotopic to the concatenation of surgery trace cobordisms and suspensions of exact homotopies.

Immediate consequence if K is graded: $\chi(CF^{\bullet}(L^{-})) = \chi(CF^{\bullet}(L^{+}))$.

Index	Self-Inter. of L^+	Crit. pts. of f^+	Crit. pts. of f^-
k+1	$(q_+ ightarrow q)$		x ₊
n-k-1	$(q ightarrow q_+)$		X_

Theorem (H)

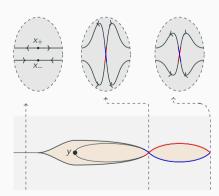
Let $K: L^+ \leadsto L^-$ be a Lagrangian cobordism. K is exactly homotopic to the concatenation of surgery trace cobordisms and suspensions of exact homotopies.

Immediate consequence if K is graded: $\chi(CF^{\bullet}(L^{-})) = \chi(CF^{\bullet}(L^{+}))$.

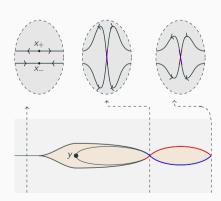
Does this extend to homotopy equivalence?

Floer cohomology of surgery traces

In order to discuss the Floer cohomology for Lagrangian cobordisms with immersed ends, we need to apply a small perturbation to the ends of the Lagrangian cobordisms so that they have transverse intersections (bottleneck trick, Mak and Wu).



We take a Morse function for the surgery trace which agrees with $\mathrm{Re}(z)$ away from the ends of the Lagrangian cobordism, and agrees with f^\pm over the ends.



Index
$$k+1$$

$$k+2$$

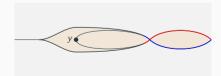
$$n-k-1$$

$$n-k$$

$$x_{+}$$

 $(q_+,0) o (q_-,0) \ (q_-,0) o (q_+,1) o (q_-,1)$

We obtain the following Floer cochains for K



Index
$$k+1$$

$$k+2$$

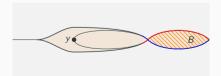
$$n-k-1$$

$$n-k$$

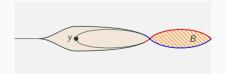
$$x_{+}$$

There is a strip of area B pairing the left and right self-intersections.

$$(q_+,0)
ightarrow (q_-,0) \leftarrow \mathcal{T}^B - (q_+,1)
ightarrow (q_-,1) \ (q_-,0)
ightarrow (q_+,0)$$



There is an isolated Morse flow line from x_{-} and y.



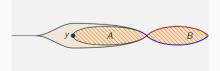
Theorem (H)

There exist Floer trajectories from

$$x_+$$
 to $((q_+,0)
ightarrow (q_-,0))$
 $((q_-,0)
ightarrow (q_+,0))$ to y

arising from a holomorphic teardrop of area A.

Index
$$k+1$$
 $k+2$
 $n-k-1$
 $n-k$
 $X_+ \longrightarrow T^A \longrightarrow (q_+,0) \rightarrow (q_-,0) \leftarrow T^B - (q_+,1) \rightarrow (q_-,1)$
 $X_- \longrightarrow (q_-,0) \rightarrow (q_+,0)$



Theorem (H)

There exist Floer trajectories from

$$x_+$$
 to $((q_+,0)
ightarrow (q_-,0))$
 $((q_-,0)
ightarrow (q_+,0))$ to y

arising from a holomorphic teardrop of area A.

This suggests that chains on LHS and RHS are cohomologically identified. (Warning: valuations!)

Index
$$k+1$$
 $k+2$ $T^A \longrightarrow (q_+,0) \rightarrow (q_-,0) \leftarrow T^B - (q_+,1) \rightarrow (q_-,1)$ $x_- \longrightarrow (q_-,0) \rightarrow (q_+,0) \rightarrow (q_+,0)$

When k = 0 (setting of Polterovich surgery), the teardrop is isolated, contributing to an m^0 term

$$\mathcal{T}^A \cdot ((q_+,0)
ightarrow (q_-,0)).$$

Index
$$k+1$$

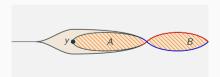
$$k+2$$

$$n-k-1$$

$$n-k$$

$$x_{+} \longrightarrow T^{A} \longrightarrow (q_{+},0) \rightarrow (q_{-},0) \leftarrow T^{B} - (q_{+},1) \rightarrow (q_{-},1)$$

$$x_{-} \longrightarrow (q_{-},0) \rightarrow (q_{+},0) \rightarrow (q_{+},0)$$



When k = 0 (setting of Polterovich surgery), the teardrop is isolated, contributing to an m^0 term

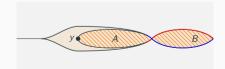
$$T^A \cdot ((q_+,0)
ightarrow (q_-,0)).$$

When B < A.

$$T^{A-B}\cdot ((q_+,1) o (q_-,1))$$

is a candidate bounding cochain.

Index
$$k+1$$
 $k+2$ $T^A \longrightarrow (q_+,0) \rightarrow (q_-,0)$ $\leftarrow T^B - (q_+,1) \rightarrow (q_-,1)$ \times $Y_+ \longrightarrow Y_+ \rightarrow (q_-,0) \rightarrow (q_+,0)$



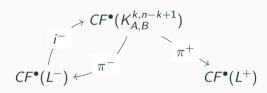
Speculation

We expect that there are filtered A_{∞} projections from the Floer A_{∞} algebra of a Lagrangian cobordism to those of the ends.

$$CF^{ullet}(K_{A,B}^{k,n-k+1})$$
 $CF^{ullet}(L^{-}) \leftarrow \pi^{-}$
 $CF^{ullet}(L^{+})$

Speculation

Previous discussion suggests: there exists a weakly filtered map of curved A_{∞} algebras $i^-: CF^{\bullet}(L^-) \to CF^{\bullet}(K^{k,n-k+1})$ so that $i^- \circ \pi^-$ is weakly filtered homotopic to the identity.

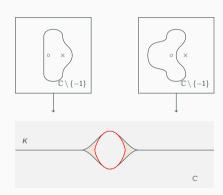


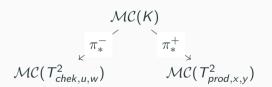
Speculation

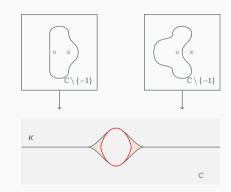
Previous discussion suggests: there exists a weakly filtered map of curved A_{∞} algebras $i^-: CF^{\bullet}(L^-) \to CF^{\bullet}(K^{k,n-k+1})$ so that $i^- \circ \pi^-$ is weakly filtered homotopic to the identity. Constructing a bounding cochain for $K_{A,B}^{k,n-k+1}$ now becomes of game of finding bounding cochains for L^- whose pushforward along i^- is well defined.

$$CF^{\bullet}(K_{A,B}^{k,n-k+1})$$
 i^{-}
 π^{+}
 $CF^{\bullet}(L^{-}) \leftarrow CF^{\bullet}(L^{+})$

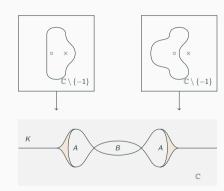
Bounding cochain: Recall that we had a Lagrangian cobordism between the Chekanov and Product type tori in $\mathbb{C}^2\setminus\{xy=-1\}$. The ends of this Lagrangian cobordism, when equipped with appropriate local systems, are isomorphic objects in the Fukaya category







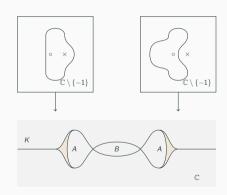
Bounding cochain: We apply the cobordism decomposition result, giving an immersed Lagrangian cobordism which is the concatenation of a surgery, exact homotopy, and anti-surgery. Since B < A, we can find a bounding cochain cancelling the contribution from the holomorphic teardrop.



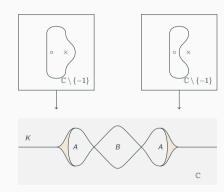
$$\begin{array}{cccc} \mathcal{MC}(K_1) & \mathcal{MC}(K_2) \\ & \pi_*^- & \pi_*^+ & \pi_*^- & \pi_*^+ \\ \mathcal{MC}(T_{chek,u,w}^2) & \mathcal{MC}(S_{whit}^2) & \mathcal{MC}(T_{prod,x,y}^2) \end{array}$$

There exists bounding cochains $b_1 \in \mathcal{MC}(K_1), b_2 \in \mathcal{MC}(K_2)$ so that

$$\pi_*^+(b_1) = \pi_*^-(b_2).$$



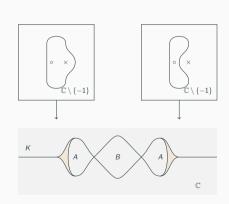
No Bounding cochain: If we sweep out more flux over the exact homotopy, the ends of the Lagrangian cobordism can be disjoined (and in particular are not isomorphic!). In this setting, $B \ge A$, and it is not possible to find a bounding cochain cancelling the m^0 term arising from the count of teardrops.



$$\begin{array}{cccc} \mathcal{MC}(K_1) & \mathcal{MC}(K_2) \\ & \pi_*^- & \pi_*^+ & \pi_*^- & \pi_*^+ \\ \mathcal{MC}(T_{chek,u',w'}^2) & \mathcal{MC}(S_{whit}^2) & \mathcal{MC}(T_{prod,x,y}^2) \end{array}$$

There are no bounding cochains $b_1 \in \mathcal{MC}(K_1), b_2 \in \mathcal{MC}(K_2)$ so that

$$\pi_*^+(b_1) = \pi_*^-(b_2).$$



References

[ALP94]	Michèle Audin, François Lalonde, and Leonid Polterovich. "Symplectic rigidity: Lagrangian submanifolds". Holomorphic curves in symplectic
	geometry. Springer, 1994, pp. 271–321.

[Arn80] Vladimir Igorevich Arnol'd. "Lagrange and Legendre cobordisms. I". Functional Analysis and Its Applications 14.3 (1980), pp. 167–177.

[Aur07] Denis Auroux. "Mirror symmetry and T-duality in the complement of an anticanonical divisor". Journal of Gökova Geometry Topology 1 (2007), pp. 51–91.

[BC14] Paul Biran and Octav Cornea. "Lagrangian cobordism and Fukaya categories". Geometric and functional analysis 24.6 (2014), pp. 1731–1830.

[BC21] Shaoyun Bai and Laurent Côté. On the Rouquier dimension of wrapped Fukaya categories and a conjecture of Orlov. 2021. URL: https: //arxiv.org/abs/2110.10663.

[Bos22] Valentin Bosshard, "Lagrangian cobordisms in Liouville manifolds", Journal of Topology and Analysis (2022), pp. 1–55.

[GPS18] Sheel Ganatra, John Pardon, and Vivek Shende. Sectorial descent for wrapped Fukaya categories. 2018. URL: https://arxiv.org/abs/1809.

03427.

[Hau20] Luis Haug. "Lagrangian antisurgery", Mathematical Research Letters 27.5 (2020), pp. 1423-1464, DOI: 10.4310/MRL.2020.v27.n5.a7.

[HH22] A Hanlon and J Hicks. "Aspects of functoriality in homological mirror symmetry for toric varieties". Advances in Mathematics 401 (2022), p. 108317.

[Hic19] Jeff Hicks. Wall-crossing from Lagrangian Cobordisms. 2019. arXiv: 1911.09979 [math.SG].

[Hic21] Jeff Hicks. Lagrangian cobordisms and Lagrangian surgery. 2021. arXiv: 2102.10197 [math.SG].

[HM22] Jeff Hicks and Cheuk Yu Mak. Some cute applications of Lagrangian cobordisms towards examples in quantitative symplectic geometry. 2022.

URL: https://arxiv.org/abs/2208.14498.

[MW18] Cheuk Yu Mak and Weiwei Wu. "Dehn twist exact sequences through Lagrangian cobordism". Compositio Mathematica 154.12 (2018), pp. 2485–

[NT20] David Nadler and Hiro Lee Tanaka "A stable ∞ -category of Lagrangian cobordisms". Advances in Mathematics 366 (2020), p. 107026

[Pol91] Leonid Polterovich. "The surgery of Lagrange submanifolds". Geometric & Functional Analysis GAFA 1.2 (1991), pp. 198–210.

[Riz16] Georgios Dimitroglou Rizell. "Legendrian ambient surgery and Legendrian contact homology". Journal of Symplectic Geometry 14.3 (2016),

pp. 811–901.