Wall Crossings from Lagrangian Cobordisms

Jeff Hicks

2020

University of Cambridge

Introduction

Filtered A_{∞} algebras

Pearly Model of Lagrangian Cobordisms

Continuation Maps From Cylindrical Cobordism

Example: Chekanov and Product tori

Beyond Cylindrical Cobordisms

Introduction

Floer Theory and disk counts

Our geometric setup:

- X a symplectic manifold with compatible almost complex structure,
- *L* ⊂ *X* be a Lagrangian submanifold
- $h: L \to \mathbb{R}$ a Morse function

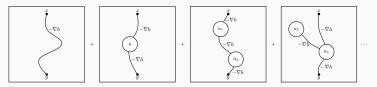
Piece 1: $CF^{\bullet}(L, h)$

Let L be a Lagrangian submanifold. Pick $h: L \to \mathbb{R}$ a Morse function.

Definition (Fukaya and Oh 1997; Biran and Cornea 2008; Charest and Woodward 2017)

The *Pearly-Floer* algebra is a filtered A_{∞} algebra where

- $CF^{\bullet}(L,h) := \Lambda \langle \operatorname{crit}(h) \rangle$
- Maps m^k: CF[●](L, h)^{⊗k} → CF[●](L, h) given by counting configurations of flow trees with holomorphic disk insertions



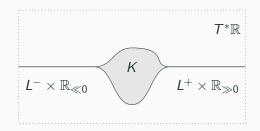
Jeff Hicks (University of Cambridge) Wall G

Wall Crossings from Lagrangian Cobordisms

Piece 2: Lagrangian Cobordisms

Definition

Let L^- and L^+ be Lagrangian submanifolds of X. A Lagrangian cobordism $K : L^- \rightsquigarrow L^+$ is a Lagrangian in $X \times T^*\mathbb{R}$ with ends limiting to $L^- \times \mathbb{R}_{\ll 0}$ and $L^+ \times \mathbb{R}_{\gg 0}$.



Piece 3: Invariance of Floer theory

When L is monotone:

- CF[•](L, h) is a chain complex giving the Lagrangian quantum cohomology.
- Given L[−] and L⁺ which are Hamiltonian isotopic, then there is a quasi-isomorphism CF[•](L[−], h) ≅ CF[•](L⁺, h).
- More generally the work of Biran and Cornea 2013 shows that if L and L+ are monotone Lagrangian cobordant, then we expect that CF[●](L[−]) ≅ CF[●](L⁺).

Outline of Talk

Our goal is to weaken the monotonicity assumption and see what we can still recover.

- The algebra $CF^{\bullet}(L, h)$ is now an example of a filtered A_{∞} algebra.
 - Define and motivate usage of A_{∞} algebras.
 - 2 Properties: *deformations* and *homotopy transfer theorem*.
- Prove invariance of CF[•](L, h) by analogy to topology.
- Say something about the specific example of Chekanov / Product tori in $\mathbb{C}^2 \setminus \{z_1 z = 1\}$

Goal I: Construction of Continuation Maps

Theorem

Let $H : X \to \mathbb{R}$ be a Hamiltonian whose Hamiltonian flow realizes an isotopy between L^- and L^+ . Then there is a continuation map between

$$\Phi_{H_t}: CF^{\bullet}(L^-) \to CF^{\bullet}(L^+).$$

We will prove this using Lagrangian cobordisms, and by analogy to topology and Morse theory.

Goal II: Construction of Continuations from Cobordisms

By extending our analogy we'll see an interesting example of a continuation map from a non-monotone Lagrangian cobordism.

Example

There exists a Lagrangian cobordism between the monotone Product and Chekanov tori $L^-_{T^2}$ and $L^+_{T^2}$ in $(\mathbb{C})^2 \setminus \{z_1 z_2 = 1\}$. Using the same framework for continuation will give us a map:

$$\Theta_{K}: CF^{\bullet}{}_{b^{-}}(L^{+}_{T^{2}}) \rightarrow CF^{\bullet}{}_{b^{+}}(L^{-}_{T^{2}})$$

Previous work:

- Most of these ideas are implicitly in Biran and Cornea 2013.
- Continuation maps already constructed in Fukaya, Oh, Ohta, and Ono 2010.
- Main geometry example from Auroux 2007.
- General Wall-Crossing constructions: Pascaleff and Tonkonog 2020; Rizell, Ekholm, and Tonkonog 2018; Palmer and Woodward 2019.

New ideas are a consistent packaging to bring these lines of thought together.

Expositional Choices

- We avoid technical details on the construction of $CF^{\bullet}(L, h)$.
- Always working over Novikov ring.
- \pm signs are ignored.

Filtered A_{∞} algebras

Definition of (A, m^k)

Filtered A_∞ algebras are a generalization of differential graded algebras

Definition

A filtered A_{∞} algebra is a graded vector space A, along with a collection of maps for $k \ge 0$

$$m^k: A^{\otimes k} \to A[2-k].$$

satisfying the curved A_∞ relations

$$0 = \sum_{i_1+j+i_2=k} m^{i_1+1+i_2} (\operatorname{id}^{\otimes i_1} \otimes m^j \otimes \operatorname{id}^{\otimes i_2}).$$

If $m^0 = 0$, we say that A is *uncurved*.

Meaning of first few A_{∞} relations

$$0 = \sum_{i_1+j+i_2=k} m^{i_1+1+i_2} (\operatorname{id}^{\otimes i_1} \otimes m^j \otimes \operatorname{id}^{\otimes i_2}).$$

 $\begin{array}{c|c} k & \text{Uncurved Relation} \\ \hline 0 & 0 \\ 1 & m^1 \circ m^1 = 0 \\ 2 & m^1 \circ m^2 = m^2(m^1 \otimes \text{id}) + m^2(\text{id} \otimes m^1) \end{array}$

Meaning of first few A_{∞} relations

$$0 = \sum_{i_1+j+i_2=k} m^{i_1+1+i_2} (\operatorname{id}^{\otimes i_1} \otimes m^j \otimes \operatorname{id}^{\otimes i_2}).$$

k	Uncurved Relation	k	Curved Relation
0	0	0	$m^1 \circ m^0 = 0$
1	$m^1 \circ m^1 = 0$	1	$m^1 \circ m^1 = m^2(m^0 \otimes id) + m^2(id \otimes m^0)$
2	$m^1\circ m^2=m^2(m^1\otimes {\operatorname{id}})+m^2({\operatorname{id}}\otimes m^1)$	2	

Meaning of first few A_{∞} relations

$$0 = \sum_{i_1+j+i_2=k} m^{i_1+1+i_2} (\operatorname{id}^{\otimes i_1} \otimes m^j \otimes \operatorname{id}^{\otimes i_2}).$$

k	Uncurved Relation	k	Curved Relation
0	0	0	$m^1 \circ m^0 = 0$
1	$m^1 \circ m^1 = 0$	1	$m^1 \circ m^1 = m^2(m^0 \otimes id) + m^2(id \otimes m^0)$
2	$m^1\circ m^2=m^2(m^1\otimes {\operatorname{id}})+m^2({\operatorname{id}}\otimes m^1)$	2	

- Note that if $m^0 = 0$, then (A, m^1) is a chain complex.
- If uncurved, then cohomology of A inherits has product from m^2 .

The price of filtered A_{∞}

Additional Data: Morphisms of A_∞ algebras are now collections of maps

$$f^k: A^{\otimes k} \to B.$$

- Defined up to Homotopy: Definitions of tensor products, homotopy, etc. all have choices involved.
- *Proceed with caution:* Many things are unintuitive:
 - No zero morphism!
 - Fiber Products still exist,
 - Mapping cones do not exist.

Why A_{∞} algebras?

We use A_{∞} algebras because they satisfy two properties that standard differential graded algebras do not.

- Their deformations are better behaved.
- They satisfy a homotopy transfer principle.

Deformations for A_{∞} algebras

Definition

Let (A, m^k) be a filtered A_{∞} algebra and $b \in A$ any element (of positive Novikov valuation). The *b*-deformed A_{∞} structure is given by

$$m_b^k(a_1 \otimes \cdots \otimes a_k) = \sum_{i_0, \dots, i_k \in \mathbb{N}} m^{i_0 + \dots + i_k + k} (b^{\otimes i_0} \otimes a_1 \otimes b^{\otimes i_1} \otimes \cdots \otimes b^{\otimes i_{k-1}} \otimes a_k \otimes b^{\otimes i_k})$$

Deformations for A_{∞} algebras

Definition

Let (A, m^k) be a filtered A_{∞} algebra and $b \in A$ any element (of positive Novikov valuation). The *b*-deformed A_{∞} structure is given by

$$m_b^k(a_1 \otimes \cdots \otimes a_k) = \sum_{i_0, \dots, i_k \in \mathbb{N}} m^{i_0 + \dots + i_k + k} (b^{\otimes i_0} \otimes a_1 \otimes b^{\otimes i_1} \otimes \dots \otimes b^{\otimes i_{k-1}} \otimes a_k \otimes b^{\otimes i_k})$$

Claim

 (A, m_b^k) is again filtered A_∞ algebra.

Example: DGA

- Let (C, d, \wedge) be a differential graded algebra.
- *a* ∈ *C*

We can then deform the differential to:

$$d_a := d + a \wedge$$

Example: DGA

- Let (C, d, \wedge) be a differential graded algebra.
- a ∈ C

We can then deform the differential to:

 $d_a := d + a \wedge$

Remains a DGA if $a \wedge a = 0$ and da = 0. Is still a filtered A_{∞} algebra regardless of what a is.

Maurer-Cartan Solutions

Definition

 (A, m^k) is called *unobstructed* if there exists a deformation $b \in A$ so that

$$m_b^0 = \sum_{k=0}^\infty m^k(b^{\otimes k}) = 0$$

The set all such deformations is called the Maurer Cartan space,

$$\mathcal{MC}(A):=\{b\in A\mid m_b^0=0\}$$

Why do we care: (A, m_b^k) now is uncurved, and has cohomology.

Deformations and Morphisms

Claim

Given a morphism $f^k : A^{\otimes k} \to B$, there is a pushforward morphism

$$f_*: \mathcal{MC}(A)
ightarrow \mathcal{MC}(B) \ b \mapsto \sum_k f^k(b^{\otimes k}).$$

Deformations and Morphisms

Claim

Given a morphism $f^k : A^{\otimes k} \to B$, there is a pushforward morphism

$$f_*: \mathcal{MC}(A) o \mathcal{MC}(B)$$

 $b \mapsto \sum_k f^k(b^{\otimes k}).$

Corollary

 (A, m^k) is unobstructed if and only if there exists $f : 0 \rightarrow A$.

Limitation: Homotopy Inverses

Limitation of DGA is that homotopy equivalences $\pi:B\to A$ do not necessarily have inverses.

Example (De Rahm Theory)

$$\mathcal{H}^{\bullet}(X;\mathbb{R}) \xleftarrow{i \longrightarrow }{\pi} \Omega^{\bullet}(X;\mathbb{R}) \xrightarrow{h}$$

Usually map *i* is not a map of algebras!

Homotopy Transfer Principle

Theorem (Homotopy Transfer Principle Kadeishvili 1980)

Let B be a uncurved A_{∞} algebra, and (A, d_A) be a chain complex.

$$A \xrightarrow[]{i}{\leftarrow \pi} B \xrightarrow[]{h}$$

$$\pi \circ m_B^1 - d_A \circ \pi = 0$$

$$i \circ d_A - m_B^1 \circ i = 0$$

$$h \circ m_B^1 + m_B^1 \circ h = \mathrm{id} - i \circ \pi$$

Then we can extend the maps π and d and i to filtered A_{∞} structures.

Curved Homotopy Transfer Principle

Theorem (Curved HTP)

Let B be a filtered A_{∞} algebra, and (A, d_A) be a module with differential.

$$A \xrightarrow[]{i}{\longleftarrow} B \xrightarrow[]{h}$$

$$\pi \circ m_B^1 - d_A \circ \pi = \pi \circ (m_B^2(h, m_B^0) + m_B^2(m^0, h))$$

$$i \circ d_A - m_B^1 \circ i = h(m_B^2(i, m_B^0) + m_B^2(m_B^0, i))$$

$$h \circ m_B^1 + m_B^1 \circ h = \text{id} - i \circ \pi + h \circ (m_B^2(m_B^0 \otimes h) + m_B^2(h \otimes m_B^0))$$

$$\pi \circ h = 0 \qquad h \circ i = 0$$

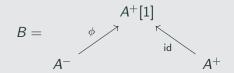
Then we can extend the maps π and d and i to A_{∞} structures.

Why do we need Curved HTT?

We'll primarily be using the curved homotopy transfer theorem for the following construction:

Definition

A mapping cylinder from A^+ to A^- is an A_∞ algebra B whose differential decomposes as



where A^- and A^+ are A_∞ algebras.

Continuation Maps from Mapping Cocylinders

Mapping cylinders give us the setup of the homotopy transfer theorm:

$$A^{-} \xleftarrow[\pi^{-}]{i^{-}} B \xleftarrow[h]{h}$$

Continuation Maps from Mapping Cocylinders

Mapping cylinders give us the setup of the homotopy transfer theorm:

$$A^{-} \xleftarrow[\pi^{-}]{i^{-}} B \xleftarrow[h]{h}$$

Additionally, we a have natural projection

$$B \xrightarrow{\pi^+} A^+$$

Continuation Maps from Mapping Cocylinders

Mapping cylinders give us the setup of the homotopy transfer theorm:

$$A^{-} \xleftarrow[\pi^{-}]{i^{-}} B \xleftarrow[h]{h}$$

Additionally, we a have natural projection

$$B \xrightarrow{\pi^+} A^+$$

The composition of *i* and π gives us continuation map associated to the cylinder.

$$\Theta_B: A^- \to A^+.$$

Jeff Hicks (University of Cambridge)

Pearly Model of Lagrangian Cobordisms

Recalling Pearly Floer model: $CF^{\bullet}(L, h)$

- $CF^{\bullet}(L, h)$ is a filtered A_{∞} algebra.
- CF[•](L, h) is a deformation of the Morse algebra CM[•](L, h) by the count of treed disks.

We frequently rather work in the uncurved setting.

Definition

If there exists a $b \in CF^{\bullet}(L, h)$ so that the *b*-deformed product has no curvature,

$$m_{b}^{0} = 0$$

we say that the Lagrangian is *unobstructed*. We write $CF^{\bullet}_{b}(L, h)$.

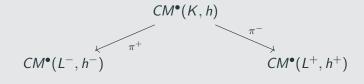
Note: $m^0 = m^1(b)$ at first order.

Restriction to ends

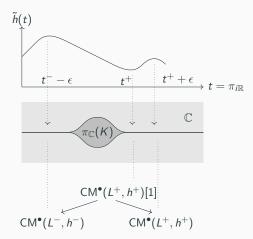
We will argue against the following analogy to Morse theory:

Claim

Let K be a cobordism. If $h : K \to \mathbb{R}$ is chosen with appropriate behaviour near $\partial K = L^- \sqcup L^+$, there exists projections on the Morse complex



Bottlenecked Morse Function

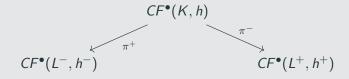


Restriction to ends

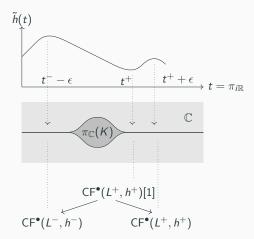
We expect that this should carry over to the Floer theoretic case.

Assumption

If $h: K \to \mathbb{R}$ is an appropriately chosen Morse function (next slide), there exists projections



Bottlenecked Floer Theory



Continuation Maps From Cylindrical Cobordism

Example: Suspension of Hamiltonian isotopy

Let $H_t : X \times \mathbb{R}_t \to \mathbb{R}$ be a time dependent Hamiltonian supported on $t \in (0,1)$. Let θ^t be the time *t*-flow and $L \subset X$ a Lagrangian. The suspension cobordism $K_{H_t} \subset X \times T^*\mathbb{R}$ parameterized by

$$L imes \mathbb{R} \hookrightarrow X imes T^* \mathbb{R}$$

 $(x, t) \mapsto (\theta^t(x), (t, H_t(x)))$

is a Lagrangian cobordism between L and $\theta^1(L)$.

Continuation Maps

Let $H_t: X \times \mathbb{R} \to \mathbb{R}$ be a Hamiltonian. With appropriate bottlenecked Morse function the suspension cobordism

$$CF^{\bullet}(K_{H_t}, h) = \underbrace{CF^{\bullet}(L^+, h^+)[1]}_{id}$$

$$CF^{\bullet}(L^-, h^-) CF^{\bullet}(L^+, h^+)$$

is an example of a filtered A_{∞} mapping cylinder.

Continuation Maps

By applying the curved homotopy transfer theorem to the configurations

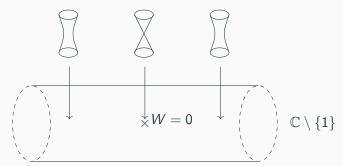
$$CF^{\bullet}(L^{-},h^{-}) \xrightarrow[]{i^{-}}{\leftarrow} CF^{\bullet}(K_{H_{t}},h) \xrightarrow[]{\pi_{+}} CF^{\bullet}(L^{+},h^{+})$$
$$(\bigcup_{h}^{\sim})$$

Theorem

There exists an A_{∞} morphism given by the composition

$$\Theta_{H_t} := \pi^+ \circ i^- : CF^{\bullet}(L^-, h^-) \to CF^{\bullet}(L^+, h^+).$$

Lefschetz Fibration on $X = \mathbb{C}^2 \setminus \{z_1 z_2 = 1\}$

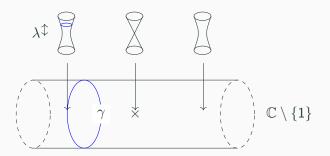


We consider the Lefschetz fibration

$$W: \mathbb{C}^2 \setminus \{z_1 z_2 = 1\} \rightarrow \mathbb{C} \setminus \{1\}$$

 $(z_1, z_2) \mapsto z_1 z_2$

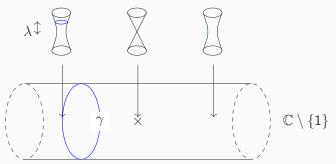
Lefschetz Fibration on $X = \mathbb{C}^2 \setminus \{z_1 z_2 = 1\}$



To each loop $\gamma \in \mathbb{C} \setminus 1$ and $\lambda \in \mathbb{R}$ we construct a Lagrangian torus

$$L_{\gamma,\lambda} \in \mathbb{C}^2 \setminus \{z_1 z_2 = 1\}$$

Lefschetz Fibration on $X = \mathbb{C}^2 \setminus \{z_1 \overline{z_2} = 1\}$

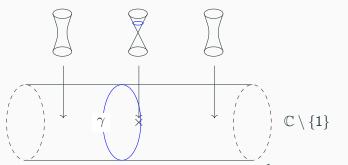


When γ avoids the critical value zero the Lagrangian $L_{\gamma,\lambda}$ does not bound any holomorphic disks.

$$CF^{\bullet}(L_{\gamma,\lambda}) = CM^{\bullet}(T^2)$$
$$\mathcal{MC}(L_{\gamma,\lambda}) = H^1(T^2)$$

Jeff Hicks (University of Cambridge)

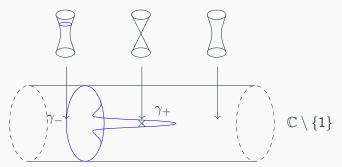
Lefschetz Fibration on $X = \mathbb{C}^2 \setminus \{z_1 z_2 = 1\}$



Assume that $\lambda \neq 0$. If γ passes through 0, then $W^{-1}(0)$ intersects $L_{\gamma,\lambda}$ cleanly, giving a holomorphic disk.

Note that this is not a regular holomorphic disk.

Lefschetz Fibration on $X = \mathbb{C}^2 \setminus \{z_1 z_2 = 1\}$

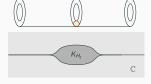


Let $\lambda \neq 0$. We now consider a family $L_{\gamma_t,\lambda}$ of Hamiltonian isotopic tori where one member passes through the critical fiber. We call:

$L_{\gamma,\lambda}$	Chekanov Type
$L_{\gamma_+,\lambda}$	Product Type

Picture of Holomorphic Disk

A holomorphic disk shows up in the middle of our cobordism:



Key Take away: If K is a cylindercial cobordism whose left end is unobstructed, then K is unobstructed.

Picture of Holomorphic Disk

A holomorphic disk shows up in the middle of our cobordism:

Key Take away: If K is a cylindercial cobordism whose left end is unobstructed, then K is unobstructed.

Continuation Map

Let K_{H_t} be the Lagrangian suspension cobordism for $L_{\gamma_t,\lambda}$.

- We obtain a continuation map $\Theta_{H_t}: CF^{ullet}(L_{\gamma_-,\lambda}) o CF^{ullet}(L_{\gamma_+,\lambda})$
- *K_{H_t}* bounds a *regular* Maslov index 0 holomorphic disk.
- Because we have map i : CF[●](L_{γ−,λ}) → CF[●](K_{Ht}), and the first is unobstructed, K_{Ht} is unobstructed.

Beyond Cylindrical Cobordisms

Monotone Lagrangian Cobordisms

While we exhibited continuation maps from Lagrangian cobordisms with topology $L \times \mathbb{R}$, but result should hold in more generality.

Theorem (Biran and Cornea 2013)

If $K : L^- \rightsquigarrow L^+$ is a monotone Lagrangian cobordism, then $CF^{\bullet}(L^-) \cong CF^{\bullet}(L^+)$ as chain complexes.

In fact, L^+, L^- are isomorphic as objects of the Fukaya category.

Question

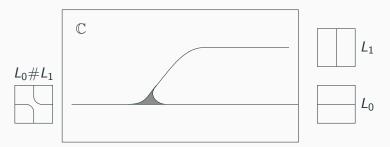
Are there any monotone 2-ended Lagrangian cobordisms besides Hamiltonian isotopy?

Lagrangian Surgery and Cobordism

Definition

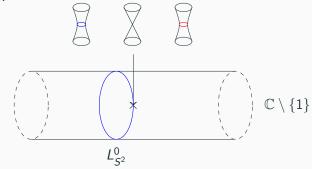
Let L^0 , L^1 be Lagrangian submanifolds intersecting at a point p transversely. There is a *surgery cobordism*

 $K: (L_0, L_1) \rightsquigarrow L_0 \#_p L_1$



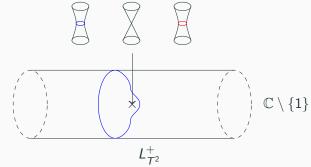
Chekanov and Product tori

Let $X = \mathbb{C}^2 \setminus \{z_1 z_2 = 1\}$. Pick γ which passes through the critical fiber, and $\lambda = 0$.



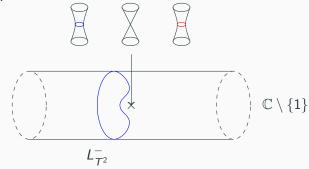
Chekanov and Product tori

Let $X = \mathbb{C}^2 \setminus \{z_1 z_2 = 1\}$. Pick γ which passes through the critical fiber, and $\lambda = 0$.



Chekanov and Product tori

Let $X = \mathbb{C}^2 \setminus \{z_1 z_2 = 1\}$. Pick γ which passes through the critical fiber, and $\lambda = 0$.



Mutation Cobordism

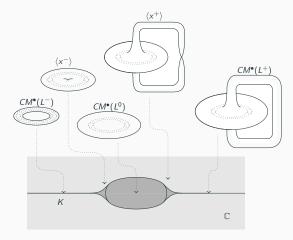
A Lagrangian cobordism.

So, there is a cobordism from the $L_{T^2}^+$ to the Whitney sphere, and then from the Whitney sphere to $L_{T^2}^-$. These can be concatenated to form a cobordism.

Claim (Haug 2015)

There exists an embedded Lagrangian cobordism K between $L_{T^2}^+$ and $L_{T^2}^-$, monotone tori of Product/Chekanov type.

Assembling the Cobordism



Comparison to Continuation Cobordism

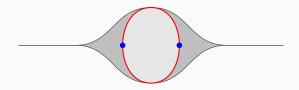
As before, we have projections from the cobordism to its end.

$$CF(L_{T^2}^-) \xleftarrow[]{} CF^{\bullet}(K) \xrightarrow[]{\pi^+} CF^{\bullet}(L^+)$$

Problematically, $CM^{\bullet}(K)$ is not homotopic to $CM^{\bullet}(L^{-}_{T^{2}} \times \mathbb{R})$, so the argument from before will not carry over.

Holomorphic disks on K

The two surgery handles in this cobordism are what give it non-cylindrical topology.



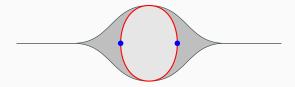
Holomorphic disks on K

The two surgery handles in this cobordism are what give it non-cylindrical topology.

Claim

There exists a single injective holomorphic disk $u: (D^2, \partial D^2) \rightarrow (X \times T^*\mathbb{R}, K).$

This holomorphic disk is characterized by $\pi_X \circ u(z) = (0, 0)$.

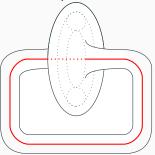


Bounding cochain for K

Claim

There exists a bounding cochain b on $CF^{\bullet}(K)$.

Idea of proof: The homology of $L_{T^2}^{\pm}$ jointly generate homology of K.

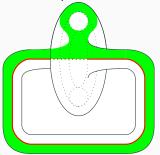


Bounding cochain for K

Claim

There exists a bounding cochain b on $CF^{\bullet}(K)$.

Idea of proof: The homology of $L_{T^2}^{\pm}$ jointly generate homology of K.



Returning to Continuation maps

When equipped with this bounding cochain, $CF^{\bullet}{}_{b}(K)$ fits into a new diagram:

$$CF^{\bullet}{}_{b^-}(L^-_{T^2}) \xleftarrow[]{}_{\pi^-} CF^{\bullet}{}_b(K) \xrightarrow[]{\pi^+} CF^{\bullet}{}_{b^+}(L^+_{T^2})$$

This *does* give a mapping cylinder.

Theorem

There exists bounding cochains b^- , b^+ so that $(L_{T^2}^+, b^+), (L_{T^2}^-, b^-)$ are isomorphic in the Fukaya category.

- First example of non-cylindrical Lagrangian cobordism giving equivalence in Fukaya category.
- Similar to results in Rizell, Ekholm, and Tonkonog 2018; Pascaleff and Tonkonog 2020; Palmer and Woodward 2019, but result doesn't require us to know the structure of Fuk(X).
- Why is this wall-crossing? The bounding cochains b[±] give rise to Local systems on L[±]_{T²}. These match the local systems associated to the Lagrangians under the wall-crossing transformation given in Auroux 2007.

Extensions of this result

- The proof that this Lagrangian cobordism gives an isomorphism of the ends is tailored to this specific example.
- There exist examples of K : L[−] → L⁺ with L[−], L⁺ unobstructed, but never isomorphic for any deformation.

Ongoing Questions

It's likely that if the homology K is generated by homology of L^- and L^+ , and L^- and L^+ are unobstructed, then K is unobstructed.

Conjecture

If every homology class of K is generated by homology of L^- and L^+ then there exists a deformation so that

$$CF^{\bullet}{}_{b^-}(L^-) \xleftarrow[]{\pi^-} CF^{\bullet}{}_b(K) \xrightarrow[]{\pi^+} CF^{\bullet}{}_{b^+}(L^+)$$

is a mapping cylinder.

References

Auroux, Denis (2007). "Mirror symmetry and T-duality in the complement of an anticanonical divisor". Journal of Gökova Geometry Topology 1, pp. 51–91.

Biran, Paul and Octav Cornea (2008). "Lagrangian quantum homology". arXiv preprint arXiv:0808.3989.

- (2013). "Lagrangian cobordism. I". Journal of the American Mathematical Society 26.2, pp. 295–340.
- Charest, François and Chris T Woodward (2017). "Floer theory and flips". Memoirs of the American Mathematical Society.
- Fukaya, Kenji and Yong-Geun Oh (1997). "Zero-loop open strings in the cotangent bundle and Morse homotopy". Asian Journal of Mathematics 1.1, pp. 96–180.
- Fukaya, Kenji, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono (2010). Lagrangian intersection Floer theory: anomaly and obstruction, Part I. Vol. 41. American Mathematical Soc.

Haug, Luis (2015). "Lagrangian antisurgery". arXiv:1511.05052.

Kadeishvili, Tornike V (1980). "On the homology theory of fibre spaces". Russian Mathematical Surveys 35.3, p. 231.

- Li, Jiayong and Katrin Wehrheim (2014). "A_∞ Structures from Morse Trees with Pseudoholomorphic Disks". Preliminary Draft.
- Palmer, Joseph and Chris Woodward (2019). "Invariance of immersed Floer cohomology under Lagrangian surgery". arXiv preprint arXiv:1903.01943.
- Pascaleff, James and Dmitry Tonkonog (2020). "The wall-crossing formula and Lagrangian mutations". Advances in Mathematics 361, p. 106850.
- Rizell, Georgios Dimitroglou, Tobias Ekholm, and Dmitry Tonkonog (2018). "Refined disk potentials for immersed Lagrangian surfaces". arXiv preprint arXiv:1806.03722.
- Jeff Hicks (University of Cambridge) Wall Crossings from Lagrangian Cobordisms

