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Introduction

Floer Theory and disk counts

Our geometric setup:

• X a symplectic manifold with compatible almost complex structure,
• L ⊂ X be a Lagrangian submanifold
• h : L → R a Morse function
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Introduction

Piece 1: CF •(L, h)

Let L be a Lagrangian submanifold. Pick h : L → R a Morse function.
Definition (Fukaya and Oh 1997; Biran and Cornea 2008; Charest
and Woodward 2017)
The Pearly-Floer algebra is a filtered A∞ algebra where

• CF •(L, h) := Λ〈crit(h)〉
• Maps mk : CF •(L, h)⊗k → CF •(L, h) given by counting

configurations of flow trees with holomorphic disk insertions
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Introduction

Piece 2: Lagrangian Cobordisms

Definition
Let L− and L+ be Lagrangian submanifolds of X . A Lagrangian
cobordism K : L−  L+ is a Lagrangian in X × T ∗R with ends limiting
to L− × R�0 and L+ × R�0.

K
L− × R�0 L+ × R�0

T ∗R
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Introduction

Piece 3: Invariance of Floer theory

When L is monotone:

• CF •(L, h) is a chain complex giving the Lagrangian quantum
cohomology.

• Given L− and L+ which are Hamiltonian isotopic, then there is a
quasi-isomorphism CF •(L−, h) ∼= CF •(L+, h).

• More generally the work of Biran and Cornea 2013 shows that if L
and L+ are monotone Lagrangian cobordant, then we expect that
CF •(L−) ∼= CF •(L+).
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Outline of Talk

Our goal is to weaken the monotonicity assumption and see what we can
still recover.

• The algebra CF •(L, h) is now an example of a filtered A∞ algebra.
• Define and motivate usage of A∞ algebras.
• 2 Properties: deformations and homotopy transfer theorem.

• Prove invariance of CF •(L, h) by analogy to topology.
• Say something about the specific example of Chekanov / Product tori

in C2 \ {z1z = 1}
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Goal I: Construction of Continuation Maps

Theorem
Let H : X → R be a Hamiltonian whose Hamiltonian flow realizes an
isotopy between L− and L+. Then there is a continuation map between

ΦHt : CF •(L−) → CF •(L+).

We will prove this using Lagrangian cobordisms, and by analogy to
topology and Morse theory.

Jeff Hicks (University of Cambridge) Wall Crossings from Lagrangian Cobordisms 2020



Introduction

Goal II: Construction of Continuations from Cobordisms

By extending our analogy we’ll see an interesting example of a
continuation map from a non-monotone Lagrangian cobordism.

Example
There exists a Lagrangian cobordism between the monotone Product and
Chekanov tori L−

T 2 and L+
T 2 in (C)2 \ {z1z2 = 1}. Using the same

framework for continuation will give us a map:

ΘK : CF •
b−(L+

T 2) → CF •
b+(L−

T 2)
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Previous work:

• Most of these ideas are implicitly in Biran and Cornea 2013.
• Continuation maps already constructed in Fukaya, Oh, Ohta, and

Ono 2010.
• Main geometry example from Auroux 2007.
• General Wall-Crossing constructions: Pascaleff and Tonkonog 2020;

Rizell, Ekholm, and Tonkonog 2018; Palmer and Woodward 2019.

New ideas are a consistent packaging to bring these lines of thought
together.
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Expositional Choices

• We avoid technical details on the construction of CF •(L, h).
• Always working over Novikov ring.
• ± signs are ignored.

Jeff Hicks (University of Cambridge) Wall Crossings from Lagrangian Cobordisms 2020



Filtered A∞ algebras



Filtered A∞ algebras Introduction to A∞

Definition of (A,mk)

Filtered A∞ algebras are a generalization of differential graded algebras

Definition
A filtered A∞ algebra is a graded vector space A, along with a collection
of maps for k ≥ 0

mk : A⊗k → A[2 − k].

satisfying the curved A∞ relations

0 =
∑

i1+j+i2=k
mi1+1+i2(id⊗i1 ⊗mj ⊗ id⊗i2).

If m0 = 0, we say that A is uncurved.
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Filtered A∞ algebras Introduction to A∞

Meaning of first few A∞ relations

0 =
∑

i1+j+i2=k
mi1+1+i2(id⊗i1 ⊗mj ⊗ id⊗i2).

k Uncurved Relation
0 0
1 m1 ◦ m1 = 0
2 m1 ◦ m2 = m2(m1 ⊗ id) + m2(id⊗m1)

k Curved Relation
0 m1 ◦ m0 = 0
1 m1 ◦ m1 = m2(m0 ⊗ id) + m2(id⊗m0)

2

• Note that if m0 = 0, then (A,m1) is a chain complex.
• If uncurved, then cohomology of A inherits has product from m2.
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Filtered A∞ algebras Introduction to A∞

The price of filtered A∞

• Additional Data: Morphisms of A∞ algebras are now collections of
maps

f k : A⊗k → B.

• Defined up to Homotopy: Definitions of tensor products, homotopy,
etc. all have choices involved.

• Proceed with caution: Many things are unintuitive:
• No zero morphism!
• Fiber Products still exist,
• Mapping cones do not exist.
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Filtered A∞ algebras Introduction to A∞

Why A∞ algebras?

We use A∞ algebras because they satisfy two properties that standard
differential graded algebras do not.

• Their deformations are better behaved.
• They satisfy a homotopy transfer principle.
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Filtered A∞ algebras Deformations

Deformations for A∞ algebras

Definition
Let (A,mk) be a filtered A∞ algebra and b ∈ A any element (of positive
Novikov valuation). The b-deformed A∞ structure is given by

mk
b(a1 ⊗ · · · ⊗ ak) =

∑
i0,...,ik∈N mi0+...+ik+k(b⊗i0 ⊗ a1 ⊗ b⊗i1 ⊗ · · · ⊗ b⊗ik−1 ⊗ ak ⊗ b⊗ik )

Claim
(A,mk

b) is again filtered A∞ algebra.
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Filtered A∞ algebras Deformations

Example: DGA

• Let (C , d ,∧) be a differential graded algebra.
• a ∈ C

We can then deform the differential to:

da := d + a∧

Remains a DGA if a ∧ a = 0 and da = 0. Is still a filtered A∞ algebra
regardless of what a is.
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Filtered A∞ algebras Deformations

Maurer-Cartan Solutions

Definition
(A,mk) is called unobstructed if there exists a deformation b ∈ A so that

m0
b =

∞∑
k=0

mk(b⊗k) = 0

The set all such deformations is called the Maurer Cartan space,

MC(A) := {b ∈ A | m0
b = 0}

Why do we care: (A,mk
b) now is uncurved, and has cohomology.
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Filtered A∞ algebras Deformations

Deformations and Morphisms

Claim
Given a morphism f k : A⊗k → B, there is a pushforward morphism

f∗ : MC(A) →MC(B)

b 7→
∑

k
f k(b⊗k).

Corollary
(A,mk) is unobstructed if and only if there exists f : 0 → A.
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Filtered A∞ algebras Homotopy Transfer

Limitation: Homotopy Inverses

Limitation of DGA is that homotopy equivalences π : B → A do not
necessarily have inverses.

Example (De Rahm Theory)

H•(X ;R) Ω•(X ;R)
i

π
h

Usually map i is not a map of algebras!

Jeff Hicks (University of Cambridge) Wall Crossings from Lagrangian Cobordisms 2020



Filtered A∞ algebras Homotopy Transfer

Homotopy Transfer Principle

Theorem (Homotopy Transfer Principle Kadeishvili 1980)
Let B be a uncurved A∞ algebra, and (A, dA) be a chain complex.

A B
i

π
h

π ◦ m1
B − dA ◦ π =0

i ◦ dA − m1
B ◦ i =0

h ◦ m1
B + m1

B ◦ h = id−i ◦ π

Then we can extend the maps π and d and i to filtered A∞ structures.
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Filtered A∞ algebras Homotopy Transfer

Curved Homotopy Transfer Principle

Theorem (Curved HTP)
Let B be a filtered A∞ algebra, and (A, dA) be a module with differential.

A B
i

π
h

π ◦ m1
B − dA ◦ π =π ◦

(
m2

B(h,m0
B) + m2

B(m0, h)
)

i ◦ dA − m1
B ◦ i =h(m2

B(i ,m0
B) + m2

B(m0
B , i))

h ◦ m1
B + m1

B ◦ h = id−i ◦ π + h ◦ (m2
B(m0

B ⊗ h) + m2
B(h ⊗ m0

B))

π ◦ h =0 h ◦ i = 0

Then we can extend the maps π and d and i to A∞ structures.
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Filtered A∞ algebras Homotopy Transfer

Why do we need Curved HTT?

We’ll primarily be using the curved homotopy transfer theorem for the
following construction:

Definition
A mapping cylinder from A+ to A− is an A∞ algebra B whose
differential decomposes as

B =

A+[1]

A− A+

φ

id

where A− and A+ are A∞ algebras.
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Filtered A∞ algebras Homotopy Transfer

Continuation Maps from Mapping Cocylinders

Mapping cylinders give us the setup of the homotopy transfer theorm:

A− B
i−

π−
h

Additionally, we a have natural projection

B A+π+

The composition of i and π gives us continuation map associated to the
cylinder.

ΘB : A− → A+.
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Pearly Model of Lagrangian Cobordisms Pearly Floer Complex

Recalling Pearly Floer model: CF •(L, h)

• CF •(L, h) is a filtered A∞ algebra.
• CF •(L, h) is a deformation of the Morse algebra CM•(L, h) by the

count of treed disks.

We frequently rather work in the uncurved setting.

Definition
If there exists a b ∈ CF •(L, h) so that the b-deformed product has no
curvature,

m0
b = 0

we say that the Lagrangian is unobstructed. We write CF •
b(L, h).

Note: m0 = m1(b) at first order.
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Pearly Model of Lagrangian Cobordisms Floer Homology of Cobordisms

Restriction to ends

We will argue against the following analogy to Morse theory:

Claim
Let K be a cobordism. If h : K → R is chosen with appropriate behaviour
near ∂K = L− t L+, there exists projections on the Morse complex

CM•(K , h)

CM•(L−, h−) CM•(L+, h+)
π+

π−
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Pearly Model of Lagrangian Cobordisms Floer Homology of Cobordisms

Bottlenecked Morse Function

h̃(t)

t = πiR

πC(K)

t− − ε t+ + εt+

CM•(L−, h−)

CM•(L+, h+)[1]

CM•(L+, h+)

C
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Pearly Model of Lagrangian Cobordisms Floer Homology of Cobordisms

Restriction to ends

We expect that this should carry over to the Floer theoretic case.

Assumption
If h : K → R is an appropriately chosen Morse function (next slide),
there exists projections

CF •(K , h)

CF •(L−, h−) CF •(L+, h+)
π+

π−

Jeff Hicks (University of Cambridge) Wall Crossings from Lagrangian Cobordisms 2020



Pearly Model of Lagrangian Cobordisms Floer Homology of Cobordisms

Bottlenecked Floer Theory

h̃(t)

t = πiR

πC(K)

t− − ε t+ + εt+
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C
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Continuation Maps From Cylindrical Cobordism Applying HTT to Cobordisms

Example: Suspension of Hamiltonian isotopy

Let Ht : X × Rt → R be a time dependent Hamiltonian supported on
t ∈ (0, 1). Let θt be the time t-flow and L ⊂ X a Lagrangian. The
suspension cobordism KHt ⊂ X × T ∗R parameterized by

L × R ↪→X × T ∗R

(x , t) 7→(θt(x), (t,Ht(x)))

is a Lagrangian cobordism between L and θ1(L).
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Continuation Maps From Cylindrical Cobordism Applying HTT to Cobordisms

Continuation Maps

Let Ht : X × R → R be a Hamiltonian. With appropriate bottlenecked
Morse function the suspension cobordism

CF •(KHt , h) =
CF •(L+, h+)[1]

CF •(L−, h−) CF •(L+, h+)

φ

id

is an example of a filtered A∞ mapping cylinder.
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Continuation Maps From Cylindrical Cobordism Applying HTT to Cobordisms

Continuation Maps

By applying the curved homotopy transfer theorem to the configurations

CF •(L−, h−) CF •(KHt , h) CF •(L+, h+)
i−

π−

h

π+

Theorem
There exists an A∞ morphism given by the composition

ΘHt := π+ ◦ i− : CF •(L−, h−) → CF •(L+, h+).
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Example: Chekanov and Product tori

Lefschetz Fibration on X = C2 \ {z1z2 = 1}

C \ {1}W = 0×

We consider the Lefschetz fibration

W : C2 \ {z1z2 = 1} →C \ {1}
(z1, z2) 7→z1z2
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Example: Chekanov and Product tori

Lefschetz Fibration on X = C2 \ {z1z2 = 1}

C \ {1}×γ

λ

To each loop γ ∈ C \ 1 and λ ∈ R we construct a Lagrangian torus

Lγ,λ ∈ C2 \ {z1z2 = 1}
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Example: Chekanov and Product tori

Lefschetz Fibration on X = C2 \ {z1z2 = 1}

C \ {1}×γ

λ

When γ avoids the critical value zero the Lagrangian Lγ,λ does not bound
any holomorphic disks.

CF •(Lγ,λ) =CM•(T 2)

MC(Lγ,λ) =H1(T 2)
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Example: Chekanov and Product tori

Lefschetz Fibration on X = C2 \ {z1z2 = 1}

C \ {1}×γ

Assume that λ 6= 0. If γ passes through 0, then W−1(0) intersects Lγ,λ

cleanly, giving a holomorphic disk.
Note that this is not a regular holomorphic disk.
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Example: Chekanov and Product tori

Lefschetz Fibration on X = C2 \ {z1z2 = 1}

C \ {1}×γ−
γ+

Let λ 6= 0. We now consider a family Lγt ,λ of Hamiltonian isotopic tori
where one member passes through the critical fiber. We call:

Lγ−,λ Chekanov Type
Lγ+,λ Product Type
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Example: Chekanov and Product tori

Picture of Holomorphic Disk

A holomorphic disk shows up in the middle of our cobordism:

KHt

C

Key Take away: If K is a cylindercial cobordism whose left end is
unobstructed, then K is unobstructed.
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Example: Chekanov and Product tori

Continuation Map

Let KHt be the Lagrangian suspension cobordism for Lγt ,λ.

• We obtain a continuation map ΘHt : CF •(Lγ−,λ) → CF •(Lγ+,λ)

• KHt bounds a regular Maslov index 0 holomorphic disk.
• Because we have map i : CF •(Lγ−,λ) → CF •(KHt ), and the first is

unobstructed, KHt is unobstructed.
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Beyond Cylindrical Cobordisms Mutation Cobordism

Monotone Lagrangian Cobordisms

While we exhibited continuation maps from Lagrangian cobordisms with
topology L × R, but result should hold in more generality.

Theorem (Biran and Cornea 2013)
If K : L−  L+ is a monotone Lagrangian cobordism, then
CF •(L−) ∼= CF •(L+) as chain complexes.

In fact, L+, L− are isomorphic as objects of the Fukaya category.

Question
Are there any monotone 2-ended Lagrangian cobordisms besides
Hamiltonian isotopy?
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Beyond Cylindrical Cobordisms Mutation Cobordism

Lagrangian Surgery and Cobordism

Definition
Let L0, L1 be Lagrangian submanifolds intersecting at a point p
transversely. There is a surgery cobordism

K : (L0, L1) L0#pL1

L1

L0

L0#L1

C
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Beyond Cylindrical Cobordisms Mutation Cobordism

Chekanov and Product tori

Let X = C2 \ {z1z2 = 1}. Pick γ which passes through the critical fiber,
and λ = 0.

C \ {1}×

L0
S2
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Beyond Cylindrical Cobordisms Mutation Cobordism

Chekanov and Product tori

Let X = C2 \ {z1z2 = 1}. Pick γ which passes through the critical fiber,
and λ = 0.

C \ {1}×

L+
T 2
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Beyond Cylindrical Cobordisms Mutation Cobordism

A Lagrangian cobordism.

So, there is a cobordism from the L+
T 2 to the Whitney sphere, and then

from the Whitney sphere to L−
T 2 . These can be concatenated to form a

cobordism.
Claim (Haug 2015)
There exists an embedded Lagrangian cobordism K between L+

T 2 and
L−

T 2 , monotone tori of Product/Chekanov type.
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Beyond Cylindrical Cobordisms Mutation Cobordism

Assembling the Cobordism

K

CM•(L−) CM•(L0)

CM•(L+)
〈x−〉

〈x+〉

C
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Beyond Cylindrical Cobordisms Mutation Cobordism

Comparison to Continuation Cobordism

As before, we have projections from the cobordism to its end.

CF (L−
T 2) CF •(K) CF •(L+)

π−
π+

Problematically, CM•(K) is not homotopic to CM•(L−
T 2 × R), so the

argument from before will not carry over.
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Beyond Cylindrical Cobordisms Floer Theory for Mutation Cobordism

Holomorphic disks on K

The two surgery handles in this cobordism are what give it non-cylindrical
topology.
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Beyond Cylindrical Cobordisms Floer Theory for Mutation Cobordism

Holomorphic disks on K

The two surgery handles in this cobordism are what give it non-cylindrical
topology.

Claim
There exists a single injective holomorphic disk
u : (D2, ∂D2) → (X × T ∗R,K).

This holomorphic disk is characterized by πX ◦ u(z) = (0, 0).
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Beyond Cylindrical Cobordisms Floer Theory for Mutation Cobordism

Bounding cochain for K

Claim
There exists a bounding cochain b on CF •(K).

Idea of proof: The homology of L±
T 2 jointly generate homology of K .
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Beyond Cylindrical Cobordisms Floer Theory for Mutation Cobordism

Returning to Continuation maps

When equipped with this bounding cochain, CF •
b(K) fits into a new

diagram:
CF •

b−(L−
T 2) CF •

b(K) CF •
b+(L+

T 2)
π−

π+

This does give a mapping cylinder.
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Beyond Cylindrical Cobordisms Floer Theory for Mutation Cobordism

Theorem
There exists bounding cochains b−, b+ so that (L+

T 2 , b+), (L−
T 2 , b−) are

isomorphic in the Fukaya category.

• First example of non-cylindrical Lagrangian cobordism giving
equivalence in Fukaya category.

• Similar to results in Rizell, Ekholm, and Tonkonog 2018; Pascaleff
and Tonkonog 2020; Palmer and Woodward 2019, but result doesn’t
require us to know the structure of Fuk(X).

• Why is this wall-crossing? The bounding cochains b± give rise to
Local systems on L±

T 2 . These match the local systems associated to
the Lagrangians under the wall-crossing transformation given in
Auroux 2007.
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Extensions of this result

• The proof that this Lagrangian cobordism gives an isomorphism of
the ends is tailored to this specific example.

• There exist examples of K : L−  L+ with L−, L+ unobstructed, but
never isomorphic for any deformation.
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Ongoing Questions

It’s likely that if the homology K is generated by homology of L− and L+,
and L− and L+ are unobstructed, then K is unobstructed.

Conjecture
If every homology class of K is generated by homology of L− and L+

then there exists a deformation so that

CF •
b−(L−) CF •

b(K) CF •
b+(L+)

π−
π+

is a mapping cylinder.
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