application 0.0.1
We look at an application of (cohomology includes into SH). Let \(X\) be a Liouville domain, and suppose that \((\partial X, \alpha)\) has no Reeb orbits. Then the map from (cohomology includes into SH) is an isomorphism \[H^\bullet(X)\to \SH(X).\] Therefore, we can compute \(\SH(X)\) to show that \((\partial X)\) has a Reeb orbit.example 0.0.2
A key example is the standard contact structure on the sphere. One can compute that the standard symplectic ball \(B^{2n}:=\{(z_1, \ldots, z_n)\st \sum_{i=1}^n |z_i|^2=1 \}\subset \CC^n\) is a Liouville domain, and that \(\SH(B^{2n})=0\). We can conclude that \((S^{2n-1}, \alpha)\) has a Reeb orbit.References
[Oan03] | Alexandru Oancea. La suite spectrale de Leray-Serre en homologie de Floer des variétés symplectiques compactes à bord de type contact. PhD thesis, Université Paris Sud-Paris XI, 2003. |