\(
\def\CC{{\mathbb C}}
\def\RR{{\mathbb R}}
\def\NN{{\mathbb N}}
\def\ZZ{{\mathbb Z}}
\def\TT{{\mathbb T}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\HF{{\operatorname{HF}^\bullet}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\ot{{\leftarrow}}
\def\st{\;:\;}
\def\Fuk{{\operatorname{Fuk}}}
\def\emprod{m}
\def\cone{\operatorname{Cone}}
\def\Flux{\operatorname{Flux}}
\def\li{i}
\def\ev{\operatorname{ev}}
\def\id{\operatorname{id}}
\def\grad{\operatorname{grad}}
\def\ind{\operatorname{ind}}
\def\weight{\operatorname{wt}}
\def\Sym{\operatorname{Sym}}
\def\HeF{\widehat{CHF}^\bullet}
\def\HHeF{\widehat{HHF}^\bullet}
\def\Spinc{\operatorname{Spin}^c}
\def\min{\operatorname{min}}
\def\div{\operatorname{div}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\Tw{{\operatorname{Tw}}}
\def\Log{{\operatorname{Log}}}
\def\TropB{{\operatorname{TropB}}}
\def\wt{{\operatorname{wt}}}
\def\Span{{\operatorname{span}}}
\def\Crit{\operatorname{Crit}}
\def\CritVal{\operatorname{CritVal}}
\def\FS{\operatorname{FS}}
\def\Sing{\operatorname{Sing}}
\def\Coh{\operatorname{Coh}}
\def\Vect{\operatorname{Vect}}
\def\into{\hookrightarrow}
\def\tensor{\otimes}
\def\CP{\mathbb{CP}}
\def\eps{\varepsilon}
\)
SympSnip: invariance of Heegaard-Floer cohomology
invariance of Heegaard-Floer cohomology
theorem 0.0.1
Suppose that \((\Sigma_g,\underline \alpha, \underline \beta,z)\) and \((\Sigma_{g'},\underline \alpha', \underline \beta',z')\) are pointed admissible Heegaard diagrams for \(M\). Then
\[\HHeF(\Sigma, \underline{\alpha}, \underline{\beta},z)\cong\HHeF(\Sigma, \underline{\alpha}, \underline{\beta},z).\]
The proof of this theorem is beyond the scope of these notes. However, we can outline some of the steps in the proof.
- Show that a similar theorem to (Heegaard moves generate equivalences) holds for pointed Heegaard diagrams.
- Invariance of \(\HHeF(\Sigma_g, \underline \alpha, \underline \beta, z)\) under isotopies of almost complex structure.
- Invariance of \(\HHeF(\Sigma_g,\underline \alpha, \underline \beta,z)\) under isotopies which do not create/destroy critical points. This can be reduced to the previous step by pulling back the almost complex structure along the isotopy.
- Invariance of \(\HHeF(\Sigma_g,\underline \alpha, \underline \beta,z)\) under isotopies which do not create/destroy critical points: these isotopies can always be taken to be Hamiltonian isotopies of the Lagrangian \(L_{\underline \alpha}\).
- Invariance of \(\HHeF(\Sigma_g,\underline \alpha, \underline \beta,z)\) under stabilizations: see (invariance of Heegaard Floer cohomology).
- Invariance of \(\HHeF(\Sigma_g,\underline \alpha, \underline \beta,z)\): by far, the trickiest portion of the proof. This requires looking at the product structure on Lagrangian intersection Floer cohomology.