\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip: a sketch of compactification in tropical geometry

a sketch of compactification in tropical geometry

Note that we have some ideas of compactification already: after all we can define tropical polynomials on \(\RR^n\), and \(\TT^n\) is a compactification of \(\RR^n\). The space \(\TT^n\) has a decomposition into pieces \(\RR_I\), which we call the torus orbits. The key notion that we will need to study is how many ``-'infinity'''s does a point \(x\) belong to.

definition 0.0.1

Given \(x\in \TT^n\), we define the sedentarity of \(x\) to be the number of \(-\infty\)'s belonging to \(q\) in its coordinate description.
We say that \(\sigma\in \TT^n\) is a polyhedron if it is the closure of a polyhedron in one of the torus orbits of \(\TT^n\). From these compact pieces, we can define a tropical variety: a locally open subset of polyhedra satisfying a balancing condition.