\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip: the tropical Hodge conjecture

the tropical Hodge conjecture

Associated to \(X\) a tropical variety, we want to some geometry. We have a short exact sequence \[ 0 \to \RR_X\to PA_X\to \Omega_X\to 0\] where \(\Omega_X\) gives the tropical cotangent sheaf, whose sections are called tropical 1-forms. Another characterization is: given a fan \(\Sigma\subset \RR^n\), want to define \(F_k(\Sigma)\subset \bigwedge^k\ZZ^n\) the set of polyvectors generated by \(v_1\wedge \cdots \wedge v_k\), where \(v_1, \ldots, v_k\) belong to a single cone of \(\Sigma\). This associates to \(X\) a tropical variety \(F_k\) a constructible sheaf on \(X\) so that \(F_{k, x}=F_k(\Sigma(x))\), where \(\Sigma(x)\) is the tangent cone at \(x\). This defines for us a chain complex \[C_\bullet(X, F_k)\] which comes with a tropical \((p, q)\) homology which is the homology \(H_q(X, F_p)\). When \(X\) can be geometrically realized, this compute some limit of a mixed Hodge structure, and satisfies the Kähler/Hodge package. Finally, there exists a cycle class map \begin{align*} CH_k(\RR^n)\to H_{p}(\RR^n, F_p)&& Z\mapsto \Sigma_\subset K_{cell} \weight(\Delta)\cdot v_\Delta \otimes \Delta \end{align*} where \(\Delta\) is the volume of the \(k\)-cell. The tropical Hodge conjecture is that this is an isomorphism.