\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

definition 0.0.1

Let \(\pi: X\to \CC\) be a symplectic fibration. Let \(\gamma:[0, 1]\to \CC\) be path with \(\gamma(0)\) a critical value. Let \(p\) be the critical point above this critical value. Suppose \(\gamma(t)\) avoids critical values for \(t\neq 0\). Let \(W^{-1}(\gamma)\) be the collection of fibers above the path \(\gamma\). Consider the map \((\phi_{\gamma}^{t})^{-1}:W^{-1}(\gamma)\mapsto X_{\gamma(0)}\) given by parallel transport. Then the thimble of \(\gamma\) from \(p\) is a Lagrangian disk \(D^n_\gamma:= (\phi_{\gamma}^{t})^{-1}(z)\subset W^{-1}(\gamma)\subset X\). The vanishing cycle of \(\gamma\) is a Lagrangian sphere \(S^{n-1}_\gamma (\phi_{\gamma}^{1})^{-1}(z)\subset X_{\gamma(0)}\), which may also be identified with \( D^n_\gamma\cap \pi^{-1}(\gamma(1))\).