\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

definition 0.0.1

An \(A_\infty\) algebra \((A, m^k_A)\) is a free graded \(\mathbb{k}\)-module \(A^\bullet\) equipped with multilinear products \[ m^k:(A^\bullet)^{\otimes k}\to (A^{\bullet+2-k}) \] for each \(k>1\). These are required to satisfy the quadratic filtered \(A_\infty\) relationship \[ 0=\sum_{k_1+k'+k_2=k} (-1)^{\clubsuit(\underline x, k_1)} (m^{k_1+1+k_2})\circ (\operatorname{id}^{\otimes k_1}\otimes m^{k'}\otimes id^{\otimes k_2}) (x_1, \cdots ,x_k) \] The sign is determined by \(\clubsuit(\underline x,k_1):= k_1+\sum_{j=1}^{k_1} \deg(x_j)\).