\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

definition 0.0.1

Let \((A, m^k_A)\) be an \(A_\infty\) algebra. A \(A-\text{Mod}\) \((M, m^{k|1}_{A|M})\) is a free graded \(\mathbb{k}\)-module \(M^\bullet\) equipped with multilinear products \[ m^{k|1}:(A^\bullet)^{\otimes k}\otimes M\to (M^{\bullet+1-k}) \] for each \(k\geq 0\). These are required to satisfy the quadratic \(A_\infty\) relationships: \begin{align*} 0=&\sum_{\substack{ j_1+j+j_2=k_1+1\\ j_1+j\leq k_1 }} m_{A|M}^{k_1-j+1|1}\circ ( \operatorname{id}_A^{\otimes j_1}\otimes m^{j}_A \otimes \operatorname{id}^{\otimes k_1-j_1-j}\otimes \operatorname{id}_M})\\ &+\sum_{\substack{ j_1+j+j_2=k_1+1\\j_1\leq k_1\leq j_1+j-1}} m_{A|M}^{j_1|1} \circ (\operatorname{id}_A^{\otimes j_1}\otimes m_{A|M}^{k_1-j_1|1}) \end{align*}