\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

definition 0.0.1

Let \(\mathcal A\) be an \(A_\infty\) category; denote the product structure by \(m^k_\mathcal A\). A right \(\mathcal A\) module (denoted by \(M\in \text{Mod}-\mathcal A\)) is a These are required to satisfy the quadratic \(A_\infty\) relationships: for every sequence \(A_0, \ldots, A_k\) of objects in \(A\), \begin{align*} 0=&\sum_{\substack{ j_1+j+j_2=k\\j_1=0 }} (-1)^{\clubsuit_k} m_{M|\mathcal A}^{1|j_2} \circ (m_{A|M}^{1|j}\otimes \operatorname{id}_A^{\otimes j_2})\\ &+\sum_{\substack{ j_1+j+j_2=k\\j_1>0 }} (-1)^{\clubsuit_k} m_{M|{\mathcal A}}^{1|k-j}\circ ( \operatorname{id}_M\otimes \operatorname{id}_A^{\otimes j_1}\otimes m^{j}_A \otimes \operatorname{id}^{\otimes j_2}) \end{align*}