\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

definition 0.0.1

Let \(M, N\) be \(A_\infty\) modules. A pre-morphism of \(A_\infty\) modules of degree \(d\) is a collection of maps for every set of objects \(A_0, \ldots, A_{k-1}\in \mathcal A\), \[f^{1|k-1}: M(A_{k-1k)\otimes \hom(A_{k-2}, A_{k-1})\otimes \cdots \otimes \hom(A_0, A_1)\to N(A_0)[d-k+1].\] The set of all \(A_\infty\) pre-morphisms \(\hom^\bullet_{\text{mod}-\mathcal A}(M, N)\) is a cochain complex whose differential is \begin{align*} (m^1_{\hom_{\text{mod}-\mathcal A}}(f))^{1|k-1}=&\sum_{j+j_2=k}(-1)^\diamondsuitm_{N}^{1|j_2}(f^{1|j-1}\tensor \id^{\tensor j_2})\\ &+\sum_{j_1+j+j_2=k, j_1>0}(-1)^\diamondsuit f^{1|j_1+j_2-1}(\id^{\tensor j_1}\tensor m^j_{\mathcal A}\tensor \id^{\tensor j_2})\\ &+ \sum_{j_1+j+j_2=k, j_1=0}(-1)^\diamondsuit f^{1|j_1+j_2-1}( m^{1|j-1}_{M}\tensor \id^{\tensor j_2}) \end{align*} where \(\diamondsuit_j=-k+j+1\sum_{i={j-1}}^{k}|x_i|\).