\(
\def\CC{{\mathbb C}}
\def\RR{{\mathbb R}}
\def\NN{{\mathbb N}}
\def\ZZ{{\mathbb Z}}
\def\TT{{\mathbb T}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\HF{{\operatorname{HF}^\bullet}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\ot{{\leftarrow}}
\def\st{\;:\;}
\def\Fuk{{\operatorname{Fuk}}}
\def\emprod{m}
\def\cone{\operatorname{Cone}}
\def\Flux{\operatorname{Flux}}
\def\li{i}
\def\ev{\operatorname{ev}}
\def\id{\operatorname{id}}
\def\grad{\operatorname{grad}}
\def\ind{\operatorname{ind}}
\def\weight{\operatorname{wt}}
\def\Sym{\operatorname{Sym}}
\def\HeF{\widehat{CHF}^\bullet}
\def\HHeF{\widehat{HHF}^\bullet}
\def\Spinc{\operatorname{Spin}^c}
\def\min{\operatorname{min}}
\def\div{\operatorname{div}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\Tw{{\operatorname{Tw}}}
\def\Log{{\operatorname{Log}}}
\def\TropB{{\operatorname{TropB}}}
\def\wt{{\operatorname{wt}}}
\def\Span{{\operatorname{span}}}
\def\Crit{\operatorname{Crit}}
\def\CritVal{\operatorname{CritVal}}
\def\FS{\operatorname{FS}}
\def\Sing{\operatorname{Sing}}
\def\Coh{\operatorname{Coh}}
\def\Vect{\operatorname{Vect}}
\def\into{\hookrightarrow}
\def\tensor{\otimes}
\def\CP{\mathbb{CP}}
\def\eps{\varepsilon}
\)
SympSnip:
definition 0.0.1
Let \((E, \delta_E)\) and \((F, \delta_F)\) be two twisted complexes. A morphism of twisted complexes is a collection of morphisms of \(\mathcal C\)
\[f_{ij}:E_i[k_i]\to E_j[k_j].\]
The set of morphisms can therefore be written as \(\hom^d((E, \delta_E), (F, \delta_F))=\bigoplus_{i, j}\hom^{d+k^F_j-k^E_i}(E_i, F_j).\)
Given a sequence \(\{(E_i, \delta_i)\}_{i=0}^k\) of twisted complexes, and \(a_i\in\hom^d((E_{i-1}, \delta_{E_{i-1}}), (E_{i}, \delta_{E_{i}}))\), we have a composition
\[m^k_{\operatorname{Tw}}(a_{k}\otimes \cdots \otimes a_{1} ):=\sum_{j_0, \ldots, j_k\geq 0} m^k(\delta_k^{\otimes j_k}\otimes a_{k}\otimes \delta_{k-1}^{\otimes j_{k-1}}\otimes a_{k-1}\otimes \cdots \otimes a_1\otimes \delta_0^{\otimes j_{0}}).\]