\documentclass[11 pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,titlesec} \usepackage{hyperref} \usepackage{tikz} \usepackage{verbatim} \usepackage{accents} \usepackage[citestyle=alphabetic,bibstyle=alphabetic,backend=bibtex]{biblatex} \usepackage{todonotes} \usepackage[american]{babel} \usepackage{fancyhdr} \hypersetup{colorlinks=false} \usetikzlibrary{calc, decorations.pathreplacing,shapes.misc} \usetikzlibrary{decorations.pathmorphing} \usepackage[left=1in,top=1in,right=1in]{geometry} \usepackage[capitalize]{cleveref} \newcommand{\mathcolorbox}[2]{\colorbox{#1}{$\displaystyle #2$}} \newcommand{\xxx}{T base with combinatorial potential data } \newcommand{\Xxx}{T base with combinatorial potential data } \newcommand{\xxxc}{combinatorial potential stratified space } \newcommand{\Xxxc}{combinatorial potential stratified space } \newcommand{\argument}{symplectic character } \newcommand{\arguments}{symplectic characters } \newcommand{\snip}[2]{#1} \newtheorem{theorem}{Theorem}[section] \newtheorem{lem}[theorem]{Lemma} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{notation}[theorem]{Notation} \newtheorem{question}[theorem]{Question} \theoremstyle{remark} \newtheorem{rem}[theorem]{Remark} \newtheorem{remark}[theorem]{Remark} \crefname{rem}{Remark}{Remarks} \Crefname{rem}{Remark}{Remarks} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{example}[theorem]{Example} \newenvironment{construction}{}{} \newenvironment{exposition}{}{} \newenvironment{application}{}{} \theoremstyle{definition} \newtheorem{df}[theorem]{Definition} \newtheorem{definition}[theorem]{Definition} \titleformat*{\section}{\normalsize \bfseries \filcenter} \titleformat*{\subsection}{\normalsize \bfseries } \newtheorem{mainthm}{Theorem} \Crefname{mainthm}{Theorem}{Theorems} \newtheorem{maincor}[mainthm]{Corollary} \Crefname{maincor}{Corollary}{Corollaries} \renewcommand*{\themainthm}{\Alph{mainthm}} \makeatletter \def\namedlabel#1#2{\begingroup \def\@currentlabel{#2}% \label{#1}\endgroup } \makeatother \fancypagestyle{firstpage}{% \fancyhf{} \renewcommand\headrulewidth{0pt} \fancyfoot[R]{Original text at \texttt{ \href{http://jeffhicks.net/snippets/index.php?tag=art_Lefschetz}{snippets/art\_Lefschetz}}} } \newcommand{\wt}{\widetilde} \newcommand{\wh}{\widehat} \newcommand{\wb}{\overline} \newcommand{\bb}{\mathbb} \newcommand{\scr}{\mathscr} \newcommand{\RR}{\mathbb R} \newcommand{\ZZ}{\mathbb Z} \newcommand{\CC}{\mathbb C} \newcommand{\TT}{\mathbb T} \newcommand{\NN}{\mathbb N} \newcommand{\PP}{\mathbb P} \newcommand{\LL}{\mathbb L} \newcommand{\II}{\mathbb I} \newcommand{\CP}{\mathbb{CP}} \newcommand{\del}{\nabla} \newcommand{\pp}{\mathbf{m}} \newcommand{\into}{\hookrightarrow} \newcommand{\emprod}{m} \newcommand{\tensor}{\otimes} \renewcommand{\Re}{\text{Re}} \renewcommand{\Im}{\text{Im}} \newcommand{\eps}{\varepsilon} \newcommand{\CF}{CF^\bullet} \newcommand{\HF}{HF^\bullet} \newcommand{\SH}{SH^\bullet} \newcommand{\core}{\mathfrak{c}} \newcommand{\cocore}{\mathfrak{u}} \newcommand{\stp}{\mathfrak{f}} \newcommand{\li}{i} \newcommand{\ot}{\leftarrow} \newcommand{\Spinc}{\text{Spin}^c} \newcommand{\ev}{ev} \newcommand{\st}{\;:\;} \newcommand{\OP}{\mathcal O_{\mathbb P^1}} \newcommand{\OPP}{\mathcal O_{\mathbb P\times \mathbb P}} \newcommand{\gentime}{\text{\ClockLogo}} \newcommand{\q}{m} \newcommand{\HeF}{\widehat{CF}^\bullet} \newcommand{\HHeF}{\widehat{HF}^\bullet} \newcommand{\p}{\eta} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\cone}{cone} \DeclareMathOperator{\dg}{dg} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Conn}{Conn} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Flux}{Flux} \DeclareMathOperator{\Crit}{Crit} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\Ext}{Ext} \DeclareMathOperator{\TropB}{TropB} \DeclareMathOperator{\weight}{wt} \DeclareMathOperator{\Span}{span} \DeclareMathOperator{\Coh}{Coh} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Fuk}{Fuk} \DeclareMathOperator{\str}{star} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Coh}{Coh} \DeclareMathOperator{\CritVal}{CritV} \DeclareMathOperator{\Sing}{Sing} \DeclareMathOperator{\FS}{FS} \DeclareMathOperator{\Vect}{Vect} \DeclareMathOperator{\grad}{grad} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\Bl}{Bl} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Tw}{Tw} \DeclareMathOperator{\Int}{Int} \DeclareMathOperator{\Arg}{\mathbf{M}}\begin{filecontents}{references.bib} @article{ballard2012hochschild, title={Hochschild dimensions of tilting objects}, author={Ballard, Matthew and Favero, David}, journal={International Mathematics Research Notices}, volume={2012}, number={11}, pages={2607--2645}, year={2012}, publisher={OUP} } @article{craw2007explicit, title={Explicit methods for derived categories of sheaves}, author={Craw, Alastair}, publisher={Citeseer} } @article{weinstein1971symplectic, title={Symplectic manifolds and their {L}agrangian submanifolds}, author={Weinstein, Alan}, journal={Advances in Mathematics}, volume={6}, number={3}, pages={329--346}, year={1971}, publisher={Academic Press} } @article{hanlon2022aspects, title={Aspects of functoriality in homological mirror symmetry for toric varieties}, author={Hanlon, A and Hicks, J}, journal={Advances in Mathematics}, volume={401}, pages={108317}, year={2022}, publisher={Elsevier} } @article{biran2013lagrangian, title={{L}agrangian cobordism. {I}}, author={Biran, Paul and Cornea, Octav}, journal={Journal of the American Mathematical Society}, volume={26}, number={2}, pages={295--340}, year={2013} } @article{tanaka2016fukaya, title={The Fukaya category pairs with Lagrangian cobordisms}, author={Tanaka, Hiro Lee}, journal={arXiv preprint arXiv:1607.04976}, year={2016} } @book{seidel2008fukaya, title={Fukaya categories and Picard-Lefschetz theory}, author={Seidel, Paul}, volume={10}, year={2008}, publisher={European Mathematical Society} } @article{seidel2003long, title={A long exact sequence for symplectic {F}loer cohomology}, author={Seidel, Paul}, journal={Topology}, volume={42}, pages={1003--1063}, year={2003} } @article{da2001lectures, title={Lectures on symplectic geometry}, author={da Silva, Ana Cannas}, journal={Lecture Notes in Mathematics}, volume={1764}, year={2001}, publisher={Springer} } @inproceedings{seidel2001vanishing, title={Vanishing cycles and mutation}, author={Seidel, Paul}, booktitle={European Congress of Mathematics: Barcelona, July 10--14, 2000 Volume II}, pages={65--85}, year={2001}, organization={Springer} } @article{seidel2001more, title={More about vanishing cycles and mutation}, author={Seidel, Paul}, journal={Symplectic Geometry and Mirror Symmetry (Seoul, 2000)}, pages={429--465}, year={2001} } @article{polterovich1991surgery, title={The surgery of {L}agrange submanifolds}, author={Polterovich, Leonid}, journal={Geometric \& Functional Analysis GAFA}, volume={1}, number={2}, pages={198--210}, year={1991}, publisher={Springer} } @misc{perutz2008handleslide, doi = {10.48550/ARXIV.0801.0564}, url = {https://arxiv.org/abs/0801.0564}, author = {Perutz, Timothy}, keywords = {Symplectic Geometry (math.SG), Geometric Topology (math.GT), FOS: Mathematics, FOS: Mathematics, 53D12; 53D40; 57M27; 32U40}, title = {Hamiltonian handleslides for {H}eegaard {F}loer homology}, publisher = {arXiv}, year = {2008}, copyright = {Assumed arXiv.org perpetual, non-exclusive license to distribute this article for submissions made before January 2004} } @incollection{audin1994symplectic, title={Symplectic rigidity: {L}agrangian submanifolds}, author={Audin, Mich{\`e}le and Lalonde, Fran{\c{c}}ois and Polterovich, Leonid}, booktitle={Holomorphic curves in symplectic geometry}, pages={271--321}, year={1994}, publisher={Springer} } @phdthesis{oancea2003suite, title={La suite spectrale de {L}eray-{S}erre en homologie de {F}loer des vari{\'e}t{\'e}s symplectiques compactes {\`a} bord de type contact}, author={Oancea, Alexandru}, year={2003}, school={Universit{\'e} Paris Sud-Paris XI} } @article{abouzaid2010geometric, title={A geometric criterion for generating the {F}ukaya category}, author={Abouzaid, Mohammed}, journal={Publications Math{\'e}matiques de l'IH{\'E}S}, volume={112}, pages={191--240}, year={2010} } @article{viterbo1999functors, title={Functors and computations in {F}loer homology with applications, I}, author={Viterbo, Claude}, journal={Geometric \& Functional Analysis GAFA}, volume={9}, number={5}, pages={985--1033}, year={1999}, publisher={Springer} } @misc{stacks-project, author = {The {Stacks project authors}}, title = {The Stacks project}, howpublished = {\url{https://stacks.math.columbia.edu}}, year = {2022}, } @article{wendlbeginner, title={A beginner’s overview of symplectic homology}, author={Wendl, Chris}, journal={Preprint. www. mathematik. hu-berlin. de/wendl/pub/SH. pdf} } @article{seidel2006biased, title={A biased view of symplectic cohomology}, author={Seidel, Paul}, journal={Current developments in mathematics}, volume={2006}, number={1}, pages={211--254}, year={2006}, publisher={International Press of Boston} } @article{arnol1980lagrange, title={{L}agrange and {L}egendre cobordisms. I}, author={Arnol'd, Vladimir Igorevich}, journal={Funktsional'nyi Analiz i ego Prilozheniya}, volume={14}, number={3}, pages={1--13}, year={1980}, publisher={Russian Academy of Sciences} } @article{fukaya2007lagrangian, title={{L}agrangian intersection {F}loer theory-anomaly and obstruction, chapter 10}, author={Fukaya, K and Oh, YG and Ohta, H and Ono, K}, journal={Preprint, can be found at http://www. math. kyoto-u. ac. jp/\~{} fukaya/Chapter10071117. pdf}, year={2007} } @article{biran2014lagrangian, title={Lagrangian cobordism and Fukaya categories}, author={Biran, Paul and Cornea, Octav}, journal={Geometric and functional analysis}, volume={24}, number={6}, pages={1731--1830}, year={2014}, publisher={Springer} } @article{bourgeois2009symplectic, title={Symplectic homology, autonomous {H}amiltonians, and {M}orse-{B}ott moduli spaces}, author={Bourgeois, Fr{\'e}d{\'e}ric and Oancea, Alexandru}, journal={Duke mathematical journal}, volume={146}, number={1}, pages={71--174}, year={2009}, publisher={Duke University Press} } @incollection{auroux2014beginner, title={A beginner’s introduction to {F}ukaya categories}, author={Auroux, Denis}, booktitle={Contact and symplectic topology}, pages={85--136}, year={2014}, publisher={Springer} } @article{singer1933three, title={Three-dimensional manifolds and their {H}eegaard diagrams}, author={Singer, James}, journal={Transactions of the American Mathematical Society}, volume={35}, number={1}, pages={88--111}, year={1933}, publisher={JSTOR} } @article{ozsvath2004holomorphic, title={Holomorphic disks and three-manifold invariants: properties and applications}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={Annals of Mathematics}, pages={1159--1245}, year={2004}, publisher={JSTOR} } @article{ozsvath2004introduction, title={An introduction to {H}eegaard {F}loer homology}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={{F}loer homology, gauge theory, and low-dimensional topology}, volume={5}, pages={3--27}, year={2004} } @article{fet1952variational, title={Variational problems on closed manifolds}, author={Fet, Abram Il'ich}, journal={Matematicheskii Sbornik}, volume={72}, number={2}, pages={271--316}, year={1952}, publisher={Russian Academy of Sciences, Steklov Mathematical Institute of Russian~…} }\end{filecontents} \addbibresource{references.bib}\begin{document} \title{introduction to Lefschetz fibrations in symplectic geometry} \maketitle \thispagestyle{firstpage} We now explore Lagrangians $K\subset X$, where we have a projection $:X\to \CC$. \begin{definition}\cite{seidel2008fukaya} \label{def:symplecticLefschetzFibration} \begin{definition} Let $(X, \omega , J)$ be a symplectic manifold equipped with compatible almost complex structure. A \emph{symplectic Lefschetz fibration} is map $\pi: X\to \CC$ satisfying the following properties: \begin{itemize} \item $\pi$ is $J$-holomorphic, in the sense that $J\pi_*=\pi_*\jmath$, where $\jmath$ is the standard complex structure on $\CC$; \item The map $\pi$ has finitely many critical points; \item The set of critical values $\{\pi(x)\;|\;z\in \Crit(\pi)\}$ are disjoint and; \item In a neighborhood of each critical point, there exists holomorphic coordinates $(z_1, \ldots, z_n)$ for $X$ so that $\pi=\sum_{i=1}^n z_i^2$. \end{itemize} If the map $\pi$ is not proper (i.e. the fibers are allowed to be non-compact,) then we impose the additional requirement: \begin{itemize} \item There exists a compact set $X_0\subset X$ so that $\pi:X_0\to \CC$ is a proper fibration and; \item The fibration $\pi:X\setminus X_0\to \CC$ is a trivial symplectic fibration, with split complex and symplectic structure. \end{itemize} \end{definition}\end{definition} Note that $\pi: X\times \CC\to \CC$, the setting considered for \underline{\href{https://jeffhicks.net/snippets/index.php?tag=def_lagrangianCobordism}{ Lagrangian cobordisms}}, trivially satisfies these criterion. A symplectic Lefschetz fibration is the symplectic geometry equivalent to a manifold equipped with a Morse function. The basic model that we consider is a function which models the neighborhood of a critical point. \begin{example} \label{exm:LocalModelOfASingularity} The symplectic fibration which we will use as a running example through this section is \begin{align*} \pi:\CC^2\to& \CC\\ (z_1, z_2)\mapsto& z_1z_2. \end{align*} This has one critical value at $z_1z_2=0$. The generic fiber $\pi^{-1}(z)$ is symplectomorphic to $(\CC^*)^2$. At the origin, this degenerates to the union of two complex lines, $\CC_{z_1=0}\cup \CC_{z_2=0}$. \cref{fig:ModelLefschetzSingularity} is a drawing of this Lefschetz fibration. \end{example} \begin{figure} \label{fig:ModelLefschetzSingularity} \centering \begin{tikzpicture} \draw[fill=gray!20] (-2.5,2.5) -- (-3.5,0.5) -- (3.5,0.5) -- (4.5,2.5) -- cycle; \begin{scope}[scale=0.5, shift={(7,3.5)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) -- (-3,3.5) (-5,3.5) -- (-3,7); \end{scope} \begin{scope}[scale=0.5,shift={(0,3.5)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) .. controls (-4.5,6) and (-4.5,4.5) .. (-5,3.5); \draw (-3,7) .. controls (-3.5,6) and (-3.5,4.5) .. (-3,3.5); \draw (-4,5.25) ellipse (0.63 and 0.2); \end{scope} \draw[->] (-2,3) -- (-2,1.5); \draw[->](1.5,3) -- (1.5,1.5); \node at (1.5,1.5) {$\times$}; \node[right] at (1.5,1.5) {$z=0$}; \node[right] at (-2,1.5) {$c\neq 0$}; \node at (6,1.5) {$\mathbb C$}; \node at (6,4.5) {$\mathbb C^2$}; \draw[->] (6,4) -- (6,2); \node[fill=white] at (6,3) {$\pi$}; \node at (1.5,6) {$z_1z_2=0$}; \node at (-2,6) {$z_1z_2=c$}; \label{fig:modelsingularity} \end{tikzpicture}\caption{The model Lefschetz singularity} \end{figure}\begin{example} \label{exm:CotangentBundleOfASphere} Another interesting piece of geometry comes from the cotangent bundle of the 2-sphere, which is a subvariety of $\CC^{3}$, \[T^*S^2=\{(z_0, z_1, z_2)\;|\; z_0^2+z_1^2+z_2^2=1\}\] We check that this has the topology of the tangent bundle. Let $S^2=\{(x_0, x_1, x_2)\;|\; x_0^2+x_1^2+x_2^2=1\}\subset \RR^3$. The tangent bundle is then described by the pairs \[T^*S^2:=\{(x_0, x_1, x_2, y_0, y_1, y_2)\;|\;x_0^2+x_1^2+x_2^2=1, \sum_{i=0}^2 x_iy_i=0 \}.\] These two constraints can be rephrased in terms of the real and imaginary components of $z_0^2+z_1^2+z_2^2=1$. The complex structure on this cotangent bundle interchanges the $x_i$ base directions with the $y_i$ tangent bundle directions. The symplectic Lefschetz fibration that we consider for the cotangent bundle of the sphere sends \begin{align*} \pi: T^*S^2\to \CC\\ (z_0, z_1, z_2)\mapsto z_2 \end{align*} The fibers of this function are the conics \[\pi^{-1}(z)=\{(z_0, z_1, z_2)\;|\; z_2=z, z_0^1+z_1^2=1-z_2^2\}\] which are regular, provided that $z_2\neq \pm 1$. \begin{figure} \label{fig:LefschetzFibrationForCotangentBundleOfASphere} \centering \begin{tikzpicture} \draw[fill=gray!20] (-2.5,2.5) -- (-3.5,0.5) -- (6,0.5) -- (7,2.5) -- cycle; \begin{scope}[scale=0.5, shift={(7,3.5)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) -- (-3,3.5) (-5,3.5) -- (-3,7); \end{scope} \begin{scope}[scale=0.5, shift={(13.5,3.5)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) -- (-3,3.5) (-5,3.5) -- (-3,7); \end{scope} \begin{scope}[scale=0.5,shift={(0,3.5)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) .. controls (-4.5,6) and (-4.5,4.5) .. (-5,3.5); \draw (-3,7) .. controls (-3.5,6) and (-3.5,4.5) .. (-3,3.5); \draw (-4,5.25) ellipse (0.63 and 0.2); \end{scope} \draw[->] (-2,3) -- (-2,1.5); \draw[->](1.5,3) -- (1.5,1.5); \node at (1.5,1.5) {$\times$}; \node[right] at (1.5,1.5) {$z=-1$}; \node at (4.75,1.5) {$\times$}; \node[right] at (4.75,1.5) {$z=1$}; \node[right] at (-2,1.5) {$c\neq 0$}; \node at (8.5,1.5) {$\mathbb C$}; \node at (8.5,4.5) {$T^*S^2$}; \draw[->] (8.5,4) -- (8.5,2); \node[fill=white] at (8.5,3) {$\pi$}; \draw (4.75,3) -- (4.75,1.5); \end{tikzpicture} \caption{Lefschetz fibration for the cotangent bundle of the sphere} \end{figure} \end{example} \begin{remark} One slightly confusing piece of notation in symplectic geometry is that the tangent bundle of $\CP^1$ is usually equipped with a different symplectic form that the cotangent bundle $T^*S^2$. This is because $T\CP^1$ is usually considered with the symplectic form which makes $\CP^1$ a symplectic, rather than Lagrangian submanifold. This can also be constructed as the symplectic blowup of $\CC^2$ at the origin. This also comes with a projection to $\CC$, by first considering the blowdown map $T\CP^1\to \CC^2$, and then composing with the fibration considered in \cref{exm:LocalModelOfASingularity}. This is not a Lefschetz fibration, as the critical fiber above zero contains 2 critical points. \end{remark} The existence of a \emph{symplectic parallel transport map} across the fibers of a Lefschetz fibration allows us to carry over many of the constructions which we considered for Lagrangian cobordisms to Lefschetz fibrations. \begin{proposition} \label{prp:SymplecticParallelTransport} The regular fibers $X_z:=\pi^{-1}(z)$ of $\pi$ are symplectic submanifolds, and there exists a connection on $TX$ whose parallel transport is a symplectomorphism of the fibers. \end{proposition} \begin{proof} \label{prf:SymplecticParallelTransport} We first show that $\ker(\pi_*)$ is a symplectic subspace. Let $0\neq v\in \ker(\pi_*)$ be any tangent vector. Since $\pi_*$ is $J$-holomorphic, $Jv\in \ker(\pi_*)$. We conclude that $\omega(v, Jv)=g(v, v)\neq 0$, and so $\omega$ is non-degenerate on the subspace $\ker(\pi_*)=T_zX$. It remains to show that the form is closed. Let $i:X_z\into X$ be and inclusion of a fiber of the Lefschetz fibration. Then $di^*\omega= i^*d\omega =0$, so the $\omega|_{X_z}$ is a symplectic form on the fiber. We can construct a connection by picking a horizontal complement to the kernel of the projection. As $\ker(\pi_*)$ is a symplectic subspace, $(\ker(\pi_*))^{\omega\bot}$, its symplectic complement, is a complementary subspace in the sense that $\ker(\pi_*)\oplus (\ker(\pi_*))^{\omega\bot}=TX$. This is a choice of horizontal complement, defining a connection on this fiber bundle. In fact, the splitting of the tangent bundle locally splits the symplectic form. \begin{proposition} \label{prp:LocalSymplecticFormInLefschetzFibration} In the local splitting $T_xX=\ker(\pi_*)\oplus(\ker(\pi_*))^{\omega^\bot}$, the symplectic form $\omega_X$ can be written as \[\omega_X=\omega|_{X_z}\oplus f\omega_\CC.\] for some smooth function $f:X\to \RR$. \end{proposition} \begin{proof} \label{prf:LocalSymplecticFormInLefschetzFibration} Pick $p\in X$ a point, and tangent vectors $(v_1, w_1), (v_2, w_2)\in T_pX=\ker(\pi_*)\oplus(\ker(\pi_*))^{\omega^\bot}.$ Because this these two spaces are symplectic orthogonal, $\omega_X(v_1, w_2)=0$ and $\omega_X(v_2, w_1)=0$. Since $v_1, v_2$ are tangent vectors to $X_p$, and symplectic forms on $\CC$ are all scalar multiples, there exists a function $f: X\to \RR$ yielding the decomposition \begin{align*} \omega_X((v_1, w_1), (v_2, w_2))=&\omega_X((v_1, 0), (v_2, 0))+ \omega_X((0, w_1), (0, w_2)). =&\omega_{X_p}(v_1, v_2)+f(p) \pi^*\omega_\CC(w_1, w_2) \end{align*} \end{proof} \end{proof} We now show that parallel transport is a symplectomorphism of the fibers. This is done by computing the vertical component of the Lie derivative of $\omega$. Let $v\in \ker(\pi_*)^{\omega \bot}$ be a horizontal vector. Then \[\mathcal L_{v \omega}=d\iota_v \omega\] We note that $\iota_v\omega$ vanishes on vertical vectors. Therefore, $d\iota_v\omega$ vanishes on pairs of vertical vectors, and so the vertical component of the Lie derivative of $\omega$ is zero. This allows us to make the following definition. \begin{definition} \label{def:SymplecticParallelTransportMap} Let $\gamma:[0,1]_t\to X\setminus \Crit(\pi)$. Define the symplectomorphism $\phi_\gamma^t: X_{\gamma(0)}\to X_{\gamma(t)}$ to be the symplectic parallel transport along the path $\gamma$. Define the symplectic inclusion $i_\gamma^t: X_{\gamma(0)}\to X$ to be the symplectic parallel transport map composed with the inclusion of the fiber into the total space $X$. \end{definition} Finally, we prove that the autosymplectomorphism of the fiber taken by small loops are Hamiltonian isotopies. . Suppose that we have a family of loops $\gamma_s:[0,1]_s\times [0,1]_t\to \CC$ with $\gamma_s(0)=\gamma_s(1)=\gamma_1(t)=z$. This gives us a family of maps $i_\gamma^t: X_z\into X$ and a symplectomorphisms $\phi_{s, 1}: X_z\to X_z$. Let $c:S^1\to X_{z}$ represent a class in $H_1(X_z)$, and consider the flux $\int_{\phi_{s, 1}\circ c}\omega|_{X_z}$. We can write this chain as the boundary of a 3 chain, \[c\times [0, 1]_s\times\{t=1\}\cup c\times [0, 1]_s\times \{t=0\}\cup c\times \{0\}_s \times [0, 1]_t\cup c\times \{1\}_s\times [0, 1]_t=\partial (c\times [0, 1_s]\times [0, 1]_t)\] This allows us to replace the flux integral with \begin{align*} 0=&\int_{i_\gamma^t\circ c} d\omega = \int_{\partial(i_\gamma^t\circ c)}\omega\\ =& \int_{i{s, 1}\circ c}\omega-\int_{i{s, 0}\circ c}\omega+\int_{i{1, t}\circ c}\omega-\int_{i_{0, t}\circ c}\omega \intertext{The first term is an integral restricted to the fiber $X_z$, so we may replace $\omega$ with $\omega|_{X_z}$. The second term and fourth term are zero as the map is constant. } =& \int_{i{s, 1}\circ c}\omega|_{X_z}+\int_{i{1, t}\circ c}\omega\\ \intertext{In the last term $\frac{d}{dt}i_{1, t}\circ c$ lies in the horizontal tangent space, and $\frac{d}{d\theta} i_{1,t}\circ c$ lies in the vertical tangent space. Therefore $\omega$ vanishes on $T(i_{1, t}\circ c)$ } =&\int_{i{s, 1}\circ c}\omega|_{X_z}= \Flux_{i_{s, 1}}(c). \end{align*} \end{proof} \begin{proposition} \label{prp:ParallelTransportOfLagrangianSubmanifold} Consider a symplectic Lefschetz fibration $\pi: X\to \CC$. Let $\gamma:\RR\to \CC$ be a path avoiding the critical values of a symplectic Lefschetz fibration. Additionally, pick a Lagrangian submanifold of a fiber $L\subset X_{\gamma(0)}$, parameterized by $\li: L\to X$. Consider the submanifold $K$ parameterized by \begin{align*}\li_t: L\times \RR\to& X\\ (x, t) \mapsto& (i\gamma^t\circ \li(x)) \end{align*} where $i_\gamma^t: X_{\gamma_0}\to X$ is given by parallel transport along $\gamma$. $K$ is a Lagrangian submanifold of $X$. \end{proposition} \begin{proof} \label{prf:ParallelTransportOfLagrangianSubmanifold} Let $\li_t:L\times \RR\to X$ be a parameterization of the submanifold $K$. By reparameterization, it suffices to check that this is a Lagrangian submanifold at points $(p, 0)$. The tangent space $T_{(p, 0)}(L\times \RR)$ is spanned by vectors $\{\partial_{x_1}, \ldots, \partial_{x_{n-1}}, \partial_t\}$. Because $L$ is a Lagrangian of the fiber, and the fiber is a symplectic submanifold, \[\li_t^*\omega(\partial_{x_i}, \partial_{x_j})=0.\] Since $K$ was constructed via parallel transport, $(\li_t)_*\partial_t\in (\ker(\pi_*))^{\omega\bot}$. Since $L$ is a Lagrangian of the fiber, $(\li_t)_*\partial_{x_i}\in \ker(\pi_*)$. Therefore, \begin{align*}\li_t^*\omega(\partial_{x_i}, \partial_{t})=0 \end{align*} \end{proof} \begin{figure} \label{fig:ProductTorus} \centering \begin{tikzpicture}[scale=.5] \draw[fill=gray!20] (-2.5,2.5) -- (-3.5,0.5) -- (5,0.5) -- (6,2.5) -- cycle; \begin{scope}[scale=0.5, shift={(6,3.78)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) -- (-3,3.5) (-5,3.5) -- (-3,7); \end{scope} \begin{scope}[scale=0.5,shift={(11,3.78)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) .. controls (-4.5,6) and (-4.5,4.5) .. (-5,3.5); \draw (-3,7) .. controls (-3.5,6) and (-3.5,4.5) .. (-3,3.5); \draw[red] (-4,5.25) ellipse (0.63 and 0.2); \end{scope} \draw[->] (3.5,3) -- (3.5,1.5); \draw[->](1,3) -- (1,1.5); \node at (1,1.5) {$\times$}; \node[below] at (1,1.5) {$z=0$}; \node at (7.5,1.5) {$\mathbb C$}; \node at (7.5,4.5) {$\mathbb C^2$}; \draw[->] (7.5,4) -- (7.5,2); \node[fill=white] at (7.5,3) {$\pi$}; \node[left] at (-2,4.5) {$T^2$}; \draw[red, scale=.5] (-3,9) ellipse (0.63 and 0.2); \draw[red] (1,4.5) ellipse (2.8 and 0.5); \draw[red] (1,4.5) ellipse (2.2 and 0.3); \draw[red] (1,1.5) ellipse (2.5 and 0.5); \end{tikzpicture}\caption{Product Torus constructed via Lefschetz fibration} \end{figure} \begin{figure} \label{fig:ChekanovTorus} \centering \begin{tikzpicture}[scale=.5] \draw[fill=gray!20] (-2.5,2.5) -- (-3.5,0.5) -- (5,0.5) -- (6,2.5) -- cycle; \begin{scope}[scale=0.5, shift={(6,3.78)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) -- (-3,3.5) (-5,3.5) -- (-3,7); \end{scope} \begin{scope}[scale=0.5,shift={(1,3.78)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) .. controls (-4.5,6) and (-4.5,4.5) .. (-5,3.5); \draw (-3,7) .. controls (-3.5,6) and (-3.5,4.5) .. (-3,3.5); \draw[blue] (-4,5.25) ellipse (0.63 and 0.2); \end{scope} \draw[->] (-1.5,3) -- (-1.5,1.5); \draw[->](1,3) -- (1,1.5); \node at (1,1.5) {$\times$}; \node[below] at (1,1.5) {$z=0$}; \node at (7.5,1.5) {$\mathbb C$}; \node at (7.5,4.5) {$\mathbb C^2$}; \draw[->] (7.5,4) -- (7.5,2); \node[fill=white] at (7.5,3) {$\pi$}; \node[left] at (-2,4.5) {$T^2$}; \draw[blue] (-1,4.5) ellipse (0.19 and 0.1); \draw[blue, scale=.5] (-1,9) ellipse (0.63 and 0.2); \draw[blue] (-1,4.5) ellipse (.84 and 0.25); \draw[blue] (-1,1.5) ellipse (0.5 and 0.2); \end{tikzpicture}\caption{Chekanov Torus constructed via Lefschetz fibration} \end{figure}When we have a curve $\gamma: \RR\to \CC$ which avoids the critical values, and a Lagrangian submanifold $L\subset X_{\gamma(0)}$, we will abuse notation and denote the parallel transport of $L$ along $\gamma$ by $L\times \gamma$. \begin{example} \label{exm:LagrangiansGivenBySymplecticParallelTransport} Recall our running example $\pi:\CC^2\to \CC$ from \cref{exm:LocalModelOfASingularity}. We will prove that the symplectic parallel transport map preserves a class of Lagrangian submanifolds of the fiber. Consider the function $H(z_1, z_2)= \frac{1}{2}\left(|z_1|^2-|z_2|^2\right)=\frac{1}{2}\left( x_1^2+y_1^2-x_2^2-y_2^2\right)$. The exterior derivative of this function, in local coordinates, is given by \[dH= x_1dx_1 +y_1dy_1 -x_2dx_2- y_2dy_2.\] We prove that $H$ is invariant under the action of symplectic parallel transport along the fibration $\pi:\CC^2\to \CC$. In this example, we can explicitly compute that $H$ is invariant under vectors contained in $\ker(d\pi)^{\omega_\bot}$. The kernel of $d\pi=z_2dz_1+z_1dz_2$ at a point $(z_1, z_2)$ is the complex subspace generated by the vector \begin{align*} \ker_{(z_1, z_2)}(d\pi)=&\Span_\CC(\langle z_1, -z_2\rangle)\\ =&\Span_\RR(\langle x_1, y_1, -x_2, -y_2\rangle, \langle -y_1, x_1, y_2, -x_2\rangle ). \end{align*} In this setting, the symplectic complement is described by the orthogonal complement, and so \begin{align*} (\ker_{(z_1, z_2)}(d\pi))^{\omega\bot}=&\Span_\CC(\langle \bar z_2, \bar z_1\rangle)\\ =&\Span_\RR(\langle x_2, -y_2, x_1, -y_1\rangle, \langle y_2, x_2, y_1, x_1\rangle ). \end{align*} One then checks that $dH$ vanishes on this by computing $dH(v)=0$ for $v\in (\ker_{(z_1, z_2)}(d\pi))^{\omega\bot}$ \begin{align*} \langle x_1, y_1, -x_2,- y_2\rangle\cdot \langle x_2, -y_2, x_1, -y_1\rangle=&0\\ \langle x_1, y_1, -x_2,-y_2\rangle\cdot \langle y_2, x_2, y_1, x_1 \rangle=&0 \end{align*} This means that the level sets of $H$ are preserved under parallel transport. We use to this to describe some Lagrangian submanifolds of $\CC^2$. If we take a level set of $H$ and restrict to a fiber above the point $re^{\jmath c}$, the level set $H^{-1}(\lambda)\cap \pi^{-1}(re^{\jmath c})$ can be explicitly parameterized by $S^1:=\theta\mapsto re^{\jmath c}\cdot(s e^{\jmath\theta}, s^{-1} e^{-\jmath\theta})$, where $s$ is determined by $r^2(s^2-s^{-2})=\lambda$. Simply because every curve is a Lagrangian submanifold of a $\CC^*$, the level set of $H$ restricted to a fiber of $\pi$ is a Lagrangian submanifold. We can now apply \cref{prp:ParallelTransportOfLagrangianSubmanifold} to obtain some new Lagrangian submanifolds of $\CC^2$ from parallel transport of these level sets. Let $\gamma:[0, 1]\to \CC\setminus 0$ be a closed curve, and $\lambda\in \RR$ some value. Define the Lagrangian $L_{\gamma, \lambda}$ to be the parallel transport of the $\lambda$-level set along the curve $\gamma$. This already gives several interesting examples of Lagrangian submanifolds inside of $\CC^2$. These Lagrangian submanifolds can also be characterized in the following way: \[L_{\gamma, \lambda}:=\{(z_1, z_2)\;|\; H(z_1, z_2)=\lambda, \pi(z_1, z_2)\in \Im(\gamma)\}.\] A good example of one of these Lagrangians is the \emph{product torus}. Let $\gamma_r=re^{\jmath\theta}$. Let $s$ be the real value so that $r^2(s^2-s^{-2})=\lambda$. Then the Lagrangian $L_{\gamma_r, \lambda}$ is explicitly parameterized by: \[L_{\gamma_r, \lambda}=\{r(se^{\jmath\theta_1}, se^{\jmath\theta_2})\}\] This agrees with the definition of the product torus from \cref{exm:productTorus}. \end{example} A Lefschetz fibration $\pi: X\to \CC$ equips $X$ with two Hamiltonian flows: the real and imaginary coordinates of the complex parameter. \begin{lemma} \label{lem:GradientOfRealPartInLefschetzFibration} Let $\pi: X\to \CC$ be a symplectic Lefschetz fibration. Let $g_X=\omega_X\circ (J_X\tensor \id)$ be the compatible metric on $X$. Then we have the following relations between gradient and Hamiltonian flows. \begin{itemize} \item The gradient flow of $\pi_\RR$ is the Hamiltonian flow of $\pi_{i\RR}$. \item The gradient flow of $\pi_{i\RR}$ is the Hamiltonian flow of $-\pi_\RR$. \end{itemize} \end{lemma} \begin{proof} \label{prf:GradientOfRealPartInLefschetzFibration} This follows from \cref{lem:gradients}. \end{proof} \begin{proposition} \label{prp:LocelModelOfThimble} Let $p\in \Crit(\pi)$ be a critical point of a symplectic Lefschetz fibration. Consider the function $\Re(\pi):X\to \RR$. The point $p$ is also critical point of $\Re(\pi)$ and $W^-_p$, the downward flow space of $p$, is a Lagrangian submanifold. \end{proposition} \begin{proof} \label{prf:LocelModelOfThimble} In the local model at a critical point of $\pi$, projection to the real coordinate can be written in local holomorphic coordinates as \[\Re(\pi)=x_1^2+\ldots x_n^2-y_1^2-\ldots y_n^2.\] The downward flow space is parameterized by \[W^-_p=\{x_1=y_1, \ldots, x_n=y_n\}\] which is a Lagrangian submanifold for the standard symplectic structure. \end{proof} \begin{example} \label{exm:LagrangianThimble} Once again we consider the Lefschetz fibration $\pi: \CC^2\to \CC$ from \cref{exm:LocalModelOfASingularity}. The only critical value of this function is $0$. Given a path $\gamma:[0, 1]\to \CC$ with $\gamma(0)=0$, the thimble can be described by the construction of \cref{exm:LagrangiansGivenBySymplecticParallelTransport}, \[D^n_\gamma=L_{\gamma, 0}.\] In particular case of $\gamma$ being the real positive $\RR_{\geq0}\subset \CC$, \begin{align*} L_{\gamma, 0}=&\{(z_1, z_2)\;|\;z_1z_2\in \RR_{\geq 0}, |z_1|^2-|z_2|^2=0\}\\ =&\{(z, \bar z)\;|\; z\in \CC\}. \end{align*} \end{example} Note that $\pi(W^-_p)$ is a ray emerging from $\pi(p)$ and heading in the positive real direction. Let $z$ be in the interior of $\pi(W^-_p)$. Then $\pi^{-1}(z)\cap W^-_p$ is a Lagrangian sphere $S^{n-1}\subset \pi^{-1}(z)$. More generally, one can take any path $\gamma\subset \CC$ with left end on a critical endpoint to determine a Lagrangian sphere in the fiber. Note that the map $(\phi_\gamma^{t_0})^{-1}: X_{\gamma(t_0)}\to X_{\gamma(0)}$ is still a well defined map. One can check that $(\phi_{\gamma}^{t_0})^{-1}(z)\subset X_{\gamma(0)}$ is a Lagrangian sphere in the fiber. \begin{definition} \label{def:LagrangianThimble} Let $\pi: X\to \CC$ be a symplectic fibration. Let $\gamma:[0, 1]\to \CC$ be path with $\gamma(0)$ a critical value. Let $p$ be the critical point above this critical value. Suppose $\gamma(t)$ avoids critical values for $t\neq 0$. Let $W^{-1}(\gamma)$ be the collection of fibers above the path $\gamma$. Consider the map $(\phi_{\gamma}^{t})^{-1}:W^{-1}(\gamma)\mapsto X_{\gamma(0)}$ given by parallel transport. Then the \emph{thimble of $\gamma$ from $p$} is a Lagrangian disk $D^n_\gamma:= (\phi_{\gamma}^{t})^{-1}(z)\subset W^{-1}(\gamma)\subset X$. The \emph{vanishing cycle of $\gamma$} is a Lagrangian sphere $S^{n-1}_\gamma (\phi_{\gamma}^{1})^{-1}(z)\subset X_{\gamma(0)}$, which may also be identified with $ D^n_\gamma\cap \pi^{-1}(\gamma(1))$. \end{definition} Sometimes, a sphere in the fiber is the vanishing cycle of more than one critical point. If $\gamma_1, \gamma_2$ are two paths so that $S^{n-1}_{\gamma_1}=S^{n-1}_{\gamma_2}$, whose concatenation $\gamma=\gamma_1\cdot \gamma_2^{-1}$ is a smooth path, we call $\gamma$ a \emph{matching path} for the critical values $\gamma_1(0)$ and $\gamma_2(0)$. When we have a matching path, we can construct a Lagrangian sphere by gluing the corresponding thimbles together at their mutual vanishing cycle boundary. \begin{example} \label{exm:MatchingPathsInCotangentBundleOfTheSphere} We continue our discussion of the sphere from \cref{exm:CotangentBundleOfASphere}. The Lefschetz fibration $\pi: T^*S^2\to S^2$ has two critical values, $\{-1, 1\}$, whose critical points corresponding to the north and south pole of the sphere. We now look at the thimbles drawn in \cref{fig:VanishingPathsForTheCotangentBundleOfTheSphere}. The first example we consider is the Lagrangian thimble constructed from $\gamma(t)=-1-t$, the real negative ray with endpoint on the critical value of the south pole. The symplectic parallel transport along $\gamma(t)$ is the negative gradient flow of the imaginary coordinate of $\pi(z_0, z_1, z_2)=z_2$ from the critical point $(0,0,1)$. The gradient flow of the imaginary coordinate is \begin{align*} \grad_{T^*S^2}(\Im(z_2))=&\text{proj}_{T(T^*S^2)}\grad_{\CC^3}(\Im(z_2))\\ =&\langle 0, 0, 1 \rangle- \cdot\frac{ \langle 0, 0, 1 \rangle\cdot \langle 2z_0, 2z_1, 2z_2 \rangle }{(2z_0)^2+(2z_1)^2+(2z_2)^2}\langle 2z_0, 2z_1, 2_2\rangle\\ =& h(z_0, z_1, z_2)\langle 0, 0, 1\rangle \end{align*} For some function $h(z_0, z_1, z_2)$. The space $\{(ix_0, ix_1, 1+x_0^2+x_1^2)\}$ is a 2-dimensional Lagrangian subspace which contains $(0,0, 1)$ and is parallel to the $\grad_{T^*S^2}(\Im(z_2))$, and therefore the Lagrangian thimble over $\gamma(t)$. This also corresponds to the cotangent fiber above the south pole, $T^*_{sp}S^2$. In this example, we can also consider the path $\gamma(t)=1-2t$, which starts at the critical value for the south pole and ends at the critical value of the north pole. This is a matching path, and therefore there is a Lagrangian $S^2_{\gamma}\subset T^*S^2$ which lives above this path. The zero section of the sphere, given by $\{(x_0, x_1, x_2)\;|\; x_0^2+x_1^2+x_2^2=1, x_i\in \RR\}$ is a 2 dimensional submanifold of $T^*S^2$ which lies parallel to $\grad_{T^*S^2}(\Im(z_2))$. The image of the zero section under $\pi$ is the curve $\gamma$, and the $S^2$ zero section clearly contains the north and south pole. Therefore, the Lagrangian sphere associated to the mapping path $\gamma$ is exactly the zero section. \end{example} \begin{figure} \label{fig:VanishingPathsForTheCotangentBundleOfTheSphere} \centering \begin{tikzpicture} \draw[fill=gray!20] (-2.5,2.5) -- (-3.5,0.5) -- (6,0.5) -- (7,2.5) -- cycle; \begin{scope}[scale=0.5, shift={(4,3.78)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) -- (-3,3.5) (-5,3.5) -- (-3,7); \end{scope} \begin{scope}[scale=0.5, shift={(13.5,3.78)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) -- (-3,3.5) (-5,3.5) -- (-3,7); \end{scope} \begin{scope}[scale=0.5,shift={(9,3.78)}] \draw (-4,7) ellipse (1 and 0.2); \draw (-4,3.5) ellipse (1 and 0.2); \draw (-5,7) .. controls (-4.5,6) and (-4.5,4.5) .. (-5,3.5); \draw (-3,7) .. controls (-3.5,6) and (-3.5,4.5) .. (-3,3.5); \draw[red] (-4,5.25) ellipse (0.63 and 0.2); \end{scope} \draw[->] (2.5,3) -- (2.5,1.5); \draw[->](0,3) -- (0,1.5); \node at (0,1.5) {$\times$}; \node[below] at (0,1.5) {$z=-1$}; \node at (4.75,1.5) {$\times$}; \node[below] at (4.75,1.5) {$z=1$}; \node[below] at (2.5,1.5) {$c\neq 0$}; \node at (8.5,1.5) {$\mathbb C$}; \node at (8.5,4.5) {$T^*S^2$}; \draw[->] (8.5,4) -- (8.5,2); \node[fill=white] at (8.5,3) {$\pi$}; \draw (4.75,3) -- (4.75,1.5); \draw[red] (0,4.5) .. controls (1.1,4.6) and (2.2,4.62) .. (2.5,4.62) .. controls (2.8,4.62) and (3.7,4.6) .. (4.8,4.5); \draw[red,yscale=-1] (0,-4.5) .. controls (1.1,-4.4) and (2.2,-4.4) .. (2.5,-4.4) .. controls (2.8,-4.4) and (3.7,-4.4) .. (4.8,-4.5); \draw[red] (0,1.5) -- (4.75,1.5); \node at (1,5) {$S^2$}; \draw[blue] (0,1.5) -- (-3,1.5); \draw[blue, scale=.5] (-5.5,9) ellipse (0.63 and 0.2); \draw[blue] (0,4.5) .. controls (-1.3,4.6) and (-2.3,4.6) .. (-2.7,4.6); \draw[blue] (0,4.5) .. controls (-1.3,4.4) and (-2.3,4.4) .. (-2.7,4.4); \node at (-2.5,5) {$T^*_{sp}S^2$}; \label{fig:vanishingpathonsphere} \end{tikzpicture}\caption{The matching math in the example of \(\pi: T^*S^2\to \CC\) gives a Lagrangian sphere. The vanishing cycle above \(0\) corresponds to the equator of the sphere.} \end{figure}These collections are useful, because Lagrangian spheres can be used to construct symplectomorphisms. \printbibliography \end{document}