\documentclass[11 pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,titlesec} \usepackage{hyperref} \usepackage{tikz} \usepackage{verbatim} \usepackage{accents} \usepackage[citestyle=alphabetic,bibstyle=alphabetic,backend=bibtex]{biblatex} \usepackage{todonotes} \usepackage[american]{babel} \usepackage{fancyhdr} \hypersetup{colorlinks=false} \usetikzlibrary{calc, decorations.pathreplacing,shapes.misc} \usetikzlibrary{decorations.pathmorphing} \usepackage[left=1in,top=1in,right=1in]{geometry} \usepackage[capitalize]{cleveref} \newcommand{\mathcolorbox}[2]{\colorbox{#1}{$\displaystyle #2$}} \newcommand{\xxx}{T base with combinatorial potential data } \newcommand{\Xxx}{T base with combinatorial potential data } \newcommand{\xxxc}{combinatorial potential stratified space } \newcommand{\Xxxc}{combinatorial potential stratified space } \newcommand{\argument}{symplectic character } \newcommand{\arguments}{symplectic characters } \newcommand{\snip}[2]{#1} \newtheorem{theorem}{Theorem}[section] \newtheorem{lem}[theorem]{Lemma} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{notation}[theorem]{Notation} \newtheorem{question}[theorem]{Question} \theoremstyle{remark} \newtheorem{rem}[theorem]{Remark} \newtheorem{remark}[theorem]{Remark} \crefname{rem}{Remark}{Remarks} \Crefname{rem}{Remark}{Remarks} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{example}[theorem]{Example} \newenvironment{construction}{}{} \newenvironment{exposition}{}{} \newenvironment{application}{}{} \theoremstyle{definition} \newtheorem{df}[theorem]{Definition} \newtheorem{definition}[theorem]{Definition} \titleformat*{\section}{\normalsize \bfseries \filcenter} \titleformat*{\subsection}{\normalsize \bfseries } \newtheorem{mainthm}{Theorem} \Crefname{mainthm}{Theorem}{Theorems} \newtheorem{maincor}[mainthm]{Corollary} \Crefname{maincor}{Corollary}{Corollaries} \renewcommand*{\themainthm}{\Alph{mainthm}} \makeatletter \def\namedlabel#1#2{\begingroup \def\@currentlabel{#2}% \label{#1}\endgroup } \makeatother \fancypagestyle{firstpage}{% \fancyhf{} \renewcommand\headrulewidth{0pt} \fancyfoot[R]{Original text at \texttt{ \href{http://jeffhicks.net/snippets/index.php?tag=art_examplesOfSymplecticManifolds}{snippets/art\_examplesOfSymplecticManifolds}}} } \newcommand{\wt}{\widetilde} \newcommand{\wh}{\widehat} \newcommand{\wb}{\overline} \newcommand{\bb}{\mathbb} \newcommand{\scr}{\mathscr} \newcommand{\RR}{\mathbb R} \newcommand{\ZZ}{\mathbb Z} \newcommand{\CC}{\mathbb C} \newcommand{\TT}{\mathbb T} \newcommand{\NN}{\mathbb N} \newcommand{\PP}{\mathbb P} \newcommand{\LL}{\mathbb L} \newcommand{\II}{\mathbb I} \newcommand{\CP}{\mathbb{CP}} \newcommand{\del}{\nabla} \newcommand{\pp}{\mathbf{m}} \newcommand{\into}{\hookrightarrow} \newcommand{\emprod}{m} \newcommand{\tensor}{\otimes} \renewcommand{\Re}{\text{Re}} \renewcommand{\Im}{\text{Im}} \newcommand{\eps}{\varepsilon} \newcommand{\CF}{CF^\bullet} \newcommand{\HF}{HF^\bullet} \newcommand{\SH}{SH^\bullet} \newcommand{\core}{\mathfrak{c}} \newcommand{\cocore}{\mathfrak{u}} \newcommand{\stp}{\mathfrak{f}} \newcommand{\li}{i} \newcommand{\ot}{\leftarrow} \newcommand{\Spinc}{\text{Spin}^c} \newcommand{\ev}{ev} \newcommand{\st}{\;:\;} \newcommand{\OP}{\mathcal O_{\mathbb P^1}} \newcommand{\OPP}{\mathcal O_{\mathbb P\times \mathbb P}} \newcommand{\gentime}{\text{\ClockLogo}} \newcommand{\q}{m} \newcommand{\HeF}{\widehat{CF}^\bullet} \newcommand{\HHeF}{\widehat{HF}^\bullet} \newcommand{\p}{\eta} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\cone}{cone} \DeclareMathOperator{\dg}{dg} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Conn}{Conn} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Flux}{Flux} \DeclareMathOperator{\Crit}{Crit} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\Ext}{Ext} \DeclareMathOperator{\TropB}{TropB} \DeclareMathOperator{\weight}{wt} \DeclareMathOperator{\Span}{span} \DeclareMathOperator{\Coh}{Coh} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Fuk}{Fuk} \DeclareMathOperator{\str}{star} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Coh}{Coh} \DeclareMathOperator{\CritVal}{CritV} \DeclareMathOperator{\Sing}{Sing} \DeclareMathOperator{\FS}{FS} \DeclareMathOperator{\Vect}{Vect} \DeclareMathOperator{\grad}{grad} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\Bl}{Bl} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Tw}{Tw} \DeclareMathOperator{\Int}{Int} \DeclareMathOperator{\Arg}{\mathbf{M}}\begin{filecontents}{references.bib} @article{ballard2012hochschild, title={Hochschild dimensions of tilting objects}, author={Ballard, Matthew and Favero, David}, journal={International Mathematics Research Notices}, volume={2012}, number={11}, pages={2607--2645}, year={2012}, publisher={OUP} } @article{craw2007explicit, title={Explicit methods for derived categories of sheaves}, author={Craw, Alastair}, publisher={Citeseer} } @article{weinstein1971symplectic, title={Symplectic manifolds and their {L}agrangian submanifolds}, author={Weinstein, Alan}, journal={Advances in Mathematics}, volume={6}, number={3}, pages={329--346}, year={1971}, publisher={Academic Press} } @article{hanlon2022aspects, title={Aspects of functoriality in homological mirror symmetry for toric varieties}, author={Hanlon, A and Hicks, J}, journal={Advances in Mathematics}, volume={401}, pages={108317}, year={2022}, publisher={Elsevier} } @article{biran2013lagrangian, title={{L}agrangian cobordism. {I}}, author={Biran, Paul and Cornea, Octav}, journal={Journal of the American Mathematical Society}, volume={26}, number={2}, pages={295--340}, year={2013} } @article{tanaka2016fukaya, title={The Fukaya category pairs with Lagrangian cobordisms}, author={Tanaka, Hiro Lee}, journal={arXiv preprint arXiv:1607.04976}, year={2016} } @book{seidel2008fukaya, title={Fukaya categories and Picard-Lefschetz theory}, author={Seidel, Paul}, volume={10}, year={2008}, publisher={European Mathematical Society} } @article{seidel2003long, title={A long exact sequence for symplectic {F}loer cohomology}, author={Seidel, Paul}, journal={Topology}, volume={42}, pages={1003--1063}, year={2003} } @article{da2001lectures, title={Lectures on symplectic geometry}, author={da Silva, Ana Cannas}, journal={Lecture Notes in Mathematics}, volume={1764}, year={2001}, publisher={Springer} } @article{polterovich1991surgery, title={The surgery of {L}agrange submanifolds}, author={Polterovich, Leonid}, journal={Geometric \& Functional Analysis GAFA}, volume={1}, number={2}, pages={198--210}, year={1991}, publisher={Springer} } @misc{perutz2008handleslide, doi = {10.48550/ARXIV.0801.0564}, url = {https://arxiv.org/abs/0801.0564}, author = {Perutz, Timothy}, keywords = {Symplectic Geometry (math.SG), Geometric Topology (math.GT), FOS: Mathematics, FOS: Mathematics, 53D12; 53D40; 57M27; 32U40}, title = {Hamiltonian handleslides for {H}eegaard {F}loer homology}, publisher = {arXiv}, year = {2008}, copyright = {Assumed arXiv.org perpetual, non-exclusive license to distribute this article for submissions made before January 2004} } @incollection{audin1994symplectic, title={Symplectic rigidity: {L}agrangian submanifolds}, author={Audin, Mich{\`e}le and Lalonde, Fran{\c{c}}ois and Polterovich, Leonid}, booktitle={Holomorphic curves in symplectic geometry}, pages={271--321}, year={1994}, publisher={Springer} } @phdthesis{oancea2003suite, title={La suite spectrale de {L}eray-{S}erre en homologie de {F}loer des vari{\'e}t{\'e}s symplectiques compactes {\`a} bord de type contact}, author={Oancea, Alexandru}, year={2003}, school={Universit{\'e} Paris Sud-Paris XI} } @article{abouzaid2010geometric, title={A geometric criterion for generating the {F}ukaya category}, author={Abouzaid, Mohammed}, journal={Publications Math{\'e}matiques de l'IH{\'E}S}, volume={112}, pages={191--240}, year={2010} } @article{viterbo1999functors, title={Functors and computations in {F}loer homology with applications, I}, author={Viterbo, Claude}, journal={Geometric \& Functional Analysis GAFA}, volume={9}, number={5}, pages={985--1033}, year={1999}, publisher={Springer} } @misc{stacks-project, author = {The {Stacks project authors}}, title = {The Stacks project}, howpublished = {\url{https://stacks.math.columbia.edu}}, year = {2022}, } @article{wendlbeginner, title={A beginner’s overview of symplectic homology}, author={Wendl, Chris}, journal={Preprint. www. mathematik. hu-berlin. de/wendl/pub/SH. pdf} } @article{seidel2006biased, title={A biased view of symplectic cohomology}, author={Seidel, Paul}, journal={Current developments in mathematics}, volume={2006}, number={1}, pages={211--254}, year={2006}, publisher={International Press of Boston} } @article{arnol1980lagrange, title={{L}agrange and {L}egendre cobordisms. I}, author={Arnol'd, Vladimir Igorevich}, journal={Funktsional'nyi Analiz i ego Prilozheniya}, volume={14}, number={3}, pages={1--13}, year={1980}, publisher={Russian Academy of Sciences} } @article{fukaya2007lagrangian, title={{L}agrangian intersection {F}loer theory-anomaly and obstruction, chapter 10}, author={Fukaya, K and Oh, YG and Ohta, H and Ono, K}, journal={Preprint, can be found at http://www. math. kyoto-u. ac. jp/\~{} fukaya/Chapter10071117. pdf}, year={2007} } @article{biran2014lagrangian, title={Lagrangian cobordism and Fukaya categories}, author={Biran, Paul and Cornea, Octav}, journal={Geometric and functional analysis}, volume={24}, number={6}, pages={1731--1830}, year={2014}, publisher={Springer} } @article{bourgeois2009symplectic, title={Symplectic homology, autonomous {H}amiltonians, and {M}orse-{B}ott moduli spaces}, author={Bourgeois, Fr{\'e}d{\'e}ric and Oancea, Alexandru}, journal={Duke mathematical journal}, volume={146}, number={1}, pages={71--174}, year={2009}, publisher={Duke University Press} } @incollection{auroux2014beginner, title={A beginner’s introduction to {F}ukaya categories}, author={Auroux, Denis}, booktitle={Contact and symplectic topology}, pages={85--136}, year={2014}, publisher={Springer} } @article{singer1933three, title={Three-dimensional manifolds and their {H}eegaard diagrams}, author={Singer, James}, journal={Transactions of the American Mathematical Society}, volume={35}, number={1}, pages={88--111}, year={1933}, publisher={JSTOR} } @article{ozsvath2004holomorphic, title={Holomorphic disks and three-manifold invariants: properties and applications}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={Annals of Mathematics}, pages={1159--1245}, year={2004}, publisher={JSTOR} } @article{ozsvath2004introduction, title={An introduction to {H}eegaard {F}loer homology}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={{F}loer homology, gauge theory, and low-dimensional topology}, volume={5}, pages={3--27}, year={2004} } @article{fet1952variational, title={Variational problems on closed manifolds}, author={Fet, Abram Il'ich}, journal={Matematicheskii Sbornik}, volume={72}, number={2}, pages={271--316}, year={1952}, publisher={Russian Academy of Sciences, Steklov Mathematical Institute of Russian~…} }\end{filecontents} \addbibresource{references.bib}\begin{document} \title{examples of symplectic manifolds } \maketitle \thispagestyle{firstpage}\begin{example} \label{exm:linearSymplecticSpace} The simplest example comes from $\RR^{2n}$, which we give the coordinates $(q_i, p_i)$. In these local coordinates, we can define a symplectic form by \[\omega_{std}=\sum_{i=1}^n d p_i\wedge d q_i.\] Note that when $n=1$, this gives the standard area form on $\RR^2$. In these coordinates, it is easy to check that $\frac{\omega_{std}^n}{n!}=\text{vol}_{\RR^{2n}}$, the standard volume form. \end{example} \begin{example} \label{def:symplecticSurface} Let $(X, g)$ be an oriented surface. Then $g$ prescribes a volume form $\omega:=\text{vol}_g\in \Omega^2(X;\RR)$, which is an example of a non-degenerate 2-form. Because $\Omega^3(X;\RR)=0$, it trivially follows that $\omega$ is closed. This example raises the possibility of the same space having many different symplectic forms, as an oriented surface can be equipped with several different metrics. \end{example} \begin{example} \label{exm:ccstarcylinder} An example that will be especially relevant later is $(\CC^*)^n$. We will equip this with a different symplectic form than the one inherited as a subset of $\CC^n=\RR^{2n}$. Since $(\CC^*)^n$ is a group, it is natural to ask for a symplectic form on $(\CC^*)^n$ which is invariant under the group action. The symplectic form \[ \omega=\frac{1}{2\pi} d(\log |z|)\wedge d\theta \] gives an example of such a symplectic form. When $n=1$, then this is the area form on $(\CC^*)$ which embeds into three dimensional space as an infinitely long cylinder, as drawn in \cref{fig:ccStarCylinder}. \begin{figure} \label{fig:ccStarCylinder} \centering \begin{tikzpicture} \usetikzlibrary{fadings} \fill[fill=gray!20, path fading = west] (-4.5,1.5) rectangle (-2.5,-0.5); \fill[fill=gray!20] (-2.5,-0.5) rectangle (2.5,1.5); \fill[fill=gray!20, path fading = east] (4.5,1.5) rectangle (2.5,-0.5); \begin{scope}[] \begin{scope}[] \clip (0,2) rectangle (1,-1); \draw (0,0.5) ellipse (0.5 and 1); \end{scope} \begin{scope}[] \clip (0,2) rectangle (-1,-1); \draw[dashed] (0,0.5) ellipse (0.5 and 1); \end{scope} \end{scope} \begin{scope}[shift={(2.5,0)}, draw=gray] \begin{scope}[] \clip (0,2) rectangle (1,-1); \draw (0,0.5) ellipse (0.5 and 1); \end{scope} \begin{scope}[] \clip (0,2) rectangle (-1,-1); \draw[dashed] (0,0.5) ellipse (0.5 and 1); \end{scope} \end{scope} \begin{scope}[shift={(-2.5,0)},draw=gray] \begin{scope}[] \clip (0,2) rectangle (1,-1); \draw (0,0.5) ellipse (0.5 and 1); \end{scope} \begin{scope}[] \clip (0,2) rectangle (-1,-1); \draw[dashed] (0,0.5) ellipse (0.5 and 1); \end{scope} \end{scope} \begin{scope}[] \draw (-3.5,1.5) -- (3.5,1.5); \begin{scope}[] \draw[dashed] (-3.5,1.5) -- (-5,1.5); \end{scope} \begin{scope}[shift={(8.5,0)}] \draw[dashed] (-3.5,1.5) -- (-5,1.5); \end{scope} \end{scope} \begin{scope}[shift={(0,-2)}] \draw (-3.5,1.5) -- (3.5,1.5); \begin{scope}[] \draw[dashed] (-3.5,1.5) -- (-5,1.5); \end{scope} \begin{scope}[shift={(8.5,0)}] \draw[dashed] (-3.5,1.5) -- (-5,1.5); \end{scope} \end{scope} \node at (-2.5,2) {$|z|=\frac{1}{2}$}; \node at (0,2) {$|z|=1$}; \node at (2.5,2) {$|z|=2$}; \end{tikzpicture}\caption{The symplectic structure that we choose for \(\CC^*\) makes it an infinitely long cylinder.} \end{figure} \end{example} The most important example of symplectic manifold comes from physics, which is the historical origin of symplectic geometry. \begin{example} \label{def:symplecticCotangentBundle} Let $Q$ be a smooth $n$-dimensional manifold. We now describe a canonical symplectic form on the cotangent bundle, $T^*Q$. At every point $q\in Q$, there exists chart $q\in U\subset Q$ which we can parameterize with coordinates $(q_1, \ldots, q_n)$. The cotangent bundle $T^*U$ inherits coordinates $(q_1, p_1, q_2, p_2, \ldots, q_n, p_n)$, where the $p_i$ linearly parameterize the fibers of the cotangent bundle in the direction of the basis element $dq_i$. \footnote{ The letter $p$ is chosen for historical reasons. The form $dq_i$ is dual to the vector $\partial q_i$, which represents the velocity of a particle. The dual to velocity is momentum, which was historically represented by the variable $\rho$. Therefore, the momentum coordinates have been denoted by $p_i$. } In these coordinates, the canonical symplectic form on this chart is: \[\omega=\sum_{i=1}^n dq_i \wedge dp_i=-d(p dq).\] \end{example} In the physical literature, $T^*Q$ is called the ``phase-space'' which encodes both the position and momentum of a particle. The canonical symplectic form describes the natural pairing of momentum and velocity. There is also a coordinate-free description of $\omega$. To do so, we first define a canonical 1-form $\eta\in \Omega^1(T^*Q)$. Let $(q,p)\in T^*Q$ be a point, where the coordinates take values $q\in Q$ and $p\in T^*_qQ$. The map $\pi: T^*Q\to Q$ induces a map $\pi_*: T(T^*Q)\to TQ$. The canonical 1-form is defined by its value on tangent vectors $v\in T_{(q,p)}(T^*M)$ \[\eta_{(q,p)}(v):=p(\pi_*(v)).\] This describes the pairing between the $Q$-component (velocity in the base) of $v$ and the momentum coordinate $p$. From the canonical form, we obtain a coordinate-free definition of canonical symplectic form as \[\omega=-d\eta.\] Note that $\omega$ is not simply a closed 2-form, but rather an \emph{exact symplectic form. } \underline{\href{https://jeffhicks.net/snippets/index.php?tag=art:weinstein}{ One can also prove}} that the cotangent bundle serves as a general kind of local model for symplectic manifolds. We've already seen the cotangent bundle appear in the examples of symplectic structures on $\RR^{2n}$ and $(\CC^*)^n$, which can be interpreted as the symplectic structures on the cotangent bundles $T^*\RR^n$ and $T^*T^n$ respectively. This example also gives an example of how an almost complex structure and symplectic structure can interact. Let $Q$ be a manifold equipped with a connection. The tangent bundle of $Q$ comes with an almost complex structure. With a choice of connection we obtain a splitting \[T_{(q,v)}TQ= T_v (T_q Q)\oplus T_q Q\] with an isomorphism $A: T_v(T_q Q)\to T_qQ.$ One can then construct an almost complex structure by taking the matrix \[J:=\begin{pmatrix} 0 & A\\ -A^{-1} & 0\end{pmatrix}: T_{(q,v)}TQ\to T_{(q,v)}TQ.\] One can similarly (but not canonically) construct an almost complex structure for the cotangent bundle. Pick $g$ a metric for $Q$, which induces a bundle isomorphism between the tangent and cotangent bundle. Let $(q_1, \ldots, q_n, p_1, \ldots p_n)$ be local coordinates for $T^*Q$ chosen so that $\partial q_1, \ldots \partial q_n$ form an orthonormal basis at the origin and the coordinates $p_1, \ldots, p_n$ parameterize the linear coordinates determined by the basis $\{\iota_{\partial q_i}g\}$. Then an almost complex structure is specified by \begin{align*} J \partial q_i=\partial p_i && J\partial p_i = -\partial q_i. \end{align*} Note that the resulting almost complex structure depends on the choice of metric, which modifies the ``size'' of the cotangent fiber relative to the base. The metric $\omega(J, -)$ is then the standard induced metric on the cotangent bundle.\printbibliography \end{document}