\documentclass[11 pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,titlesec} \usepackage{hyperref} \usepackage{tikz} \usepackage{verbatim} \usepackage{accents} \usepackage[citestyle=alphabetic,bibstyle=alphabetic,backend=bibtex]{biblatex} \usepackage{todonotes} \usepackage[american]{babel} \usepackage{fancyhdr} \hypersetup{colorlinks=false} \usetikzlibrary{calc, decorations.pathreplacing,shapes.misc} \usetikzlibrary{decorations.pathmorphing} \usepackage[left=1in,top=1in,right=1in]{geometry} \usepackage[capitalize]{cleveref} \newcommand{\mathcolorbox}[2]{\colorbox{#1}{$\displaystyle #2$}} \newcommand{\xxx}{T base with combinatorial potential data } \newcommand{\Xxx}{T base with combinatorial potential data } \newcommand{\xxxc}{combinatorial potential stratified space } \newcommand{\Xxxc}{combinatorial potential stratified space } \newcommand{\argument}{symplectic character } \newcommand{\arguments}{symplectic characters } \newcommand{\snip}[2]{#1} \newtheorem{theorem}{Theorem}[section] \newtheorem{lem}[theorem]{Lemma} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{notation}[theorem]{Notation} \newtheorem{question}[theorem]{Question} \theoremstyle{remark} \newtheorem{rem}[theorem]{Remark} \newtheorem{remark}[theorem]{Remark} \crefname{rem}{Remark}{Remarks} \Crefname{rem}{Remark}{Remarks} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{example}[theorem]{Example} \newenvironment{construction}{}{} \newenvironment{exposition}{}{} \newenvironment{application}{}{} \theoremstyle{definition} \newtheorem{df}[theorem]{Definition} \newtheorem{definition}[theorem]{Definition} \titleformat*{\section}{\normalsize \bfseries \filcenter} \titleformat*{\subsection}{\normalsize \bfseries } \newtheorem{mainthm}{Theorem} \Crefname{mainthm}{Theorem}{Theorems} \newtheorem{maincor}[mainthm]{Corollary} \Crefname{maincor}{Corollary}{Corollaries} \renewcommand*{\themainthm}{\Alph{mainthm}} \makeatletter \def\namedlabel#1#2{\begingroup \def\@currentlabel{#2}% \label{#1}\endgroup } \makeatother \fancypagestyle{firstpage}{% \fancyhf{} \renewcommand\headrulewidth{0pt} \fancyfoot[R]{Original text at \texttt{ \href{http://jeffhicks.net/snippets/index.php?tag=art_heegaardDiagrams}{snippets/art\_heegaardDiagrams}}} } \newcommand{\wt}{\widetilde} \newcommand{\wh}{\widehat} \newcommand{\wb}{\overline} \newcommand{\bb}{\mathbb} \newcommand{\scr}{\mathscr} \newcommand{\RR}{\mathbb R} \newcommand{\ZZ}{\mathbb Z} \newcommand{\CC}{\mathbb C} \newcommand{\TT}{\mathbb T} \newcommand{\NN}{\mathbb N} \newcommand{\PP}{\mathbb P} \newcommand{\LL}{\mathbb L} \newcommand{\II}{\mathbb I} \newcommand{\CP}{\mathbb{CP}} \newcommand{\del}{\nabla} \newcommand{\pp}{\mathbf{m}} \newcommand{\into}{\hookrightarrow} \newcommand{\emprod}{m} \newcommand{\tensor}{\otimes} \renewcommand{\Re}{\text{Re}} \renewcommand{\Im}{\text{Im}} \newcommand{\eps}{\varepsilon} \newcommand{\CF}{CF^\bullet} \newcommand{\HF}{HF^\bullet} \newcommand{\SH}{SH^\bullet} \newcommand{\core}{\mathfrak{c}} \newcommand{\cocore}{\mathfrak{u}} \newcommand{\stp}{\mathfrak{f}} \newcommand{\li}{i} \newcommand{\ot}{\leftarrow} \newcommand{\Spinc}{\text{Spin}^c} \newcommand{\ev}{ev} \newcommand{\st}{\;:\;} \newcommand{\OP}{\mathcal O_{\mathbb P^1}} \newcommand{\OPP}{\mathcal O_{\mathbb P\times \mathbb P}} \newcommand{\gentime}{\text{\ClockLogo}} \newcommand{\q}{m} \newcommand{\HeF}{\widehat{CF}^\bullet} \newcommand{\HHeF}{\widehat{HF}^\bullet} \newcommand{\p}{\eta} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\cone}{cone} \DeclareMathOperator{\dg}{dg} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Conn}{Conn} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Flux}{Flux} \DeclareMathOperator{\Crit}{Crit} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\Ext}{Ext} \DeclareMathOperator{\TropB}{TropB} \DeclareMathOperator{\weight}{wt} \DeclareMathOperator{\Span}{span} \DeclareMathOperator{\Coh}{Coh} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Fuk}{Fuk} \DeclareMathOperator{\str}{star} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\grad}{grad} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\Bl}{Bl} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Tw}{Tw} \DeclareMathOperator{\Int}{Int} \DeclareMathOperator{\Arg}{\mathbf{M}}\begin{filecontents}{references.bib} @article{ballard2012hochschild, title={Hochschild dimensions of tilting objects}, author={Ballard, Matthew and Favero, David}, journal={International Mathematics Research Notices}, volume={2012}, number={11}, pages={2607--2645}, year={2012}, publisher={OUP} } @article{craw2007explicit, title={Explicit methods for derived categories of sheaves}, author={Craw, Alastair}, publisher={Citeseer} } @article{weinstein1971symplectic, title={Symplectic manifolds and their {L}agrangian submanifolds}, author={Weinstein, Alan}, journal={Advances in Mathematics}, volume={6}, number={3}, pages={329--346}, year={1971}, publisher={Academic Press} } @article{hanlon2022aspects, title={Aspects of functoriality in homological mirror symmetry for toric varieties}, author={Hanlon, A and Hicks, J}, journal={Advances in Mathematics}, volume={401}, pages={108317}, year={2022}, publisher={Elsevier} } @article{biran2013lagrangian, title={{L}agrangian cobordism. {I}}, author={Biran, Paul and Cornea, Octav}, journal={Journal of the American Mathematical Society}, volume={26}, number={2}, pages={295--340}, year={2013} } @article{tanaka2016fukaya, title={The Fukaya category pairs with Lagrangian cobordisms}, author={Tanaka, Hiro Lee}, journal={arXiv preprint arXiv:1607.04976}, year={2016} } @book{seidel2008fukaya, title={Fukaya categories and Picard-Lefschetz theory}, author={Seidel, Paul}, volume={10}, year={2008}, publisher={European Mathematical Society} } @article{seidel2003long, title={A long exact sequence for symplectic {F}loer cohomology}, author={Seidel, Paul}, journal={Topology}, volume={42}, pages={1003--1063}, year={2003} } @article{da2001lectures, title={Lectures on symplectic geometry}, author={da Silva, Ana Cannas}, journal={Lecture Notes in Mathematics}, volume={1764}, year={2001}, publisher={Springer} } @article{polterovich1991surgery, title={The surgery of {L}agrange submanifolds}, author={Polterovich, Leonid}, journal={Geometric \& Functional Analysis GAFA}, volume={1}, number={2}, pages={198--210}, year={1991}, publisher={Springer} } @misc{perutz2008handleslide, doi = {10.48550/ARXIV.0801.0564}, url = {https://arxiv.org/abs/0801.0564}, author = {Perutz, Timothy}, keywords = {Symplectic Geometry (math.SG), Geometric Topology (math.GT), FOS: Mathematics, FOS: Mathematics, 53D12; 53D40; 57M27; 32U40}, title = {Hamiltonian handleslides for {H}eegaard {F}loer homology}, publisher = {arXiv}, year = {2008}, copyright = {Assumed arXiv.org perpetual, non-exclusive license to distribute this article for submissions made before January 2004} } @incollection{audin1994symplectic, title={Symplectic rigidity: {L}agrangian submanifolds}, author={Audin, Mich{\`e}le and Lalonde, Fran{\c{c}}ois and Polterovich, Leonid}, booktitle={Holomorphic curves in symplectic geometry}, pages={271--321}, year={1994}, publisher={Springer} } @phdthesis{oancea2003suite, title={La suite spectrale de {L}eray-{S}erre en homologie de {F}loer des vari{\'e}t{\'e}s symplectiques compactes {\`a} bord de type contact}, author={Oancea, Alexandru}, year={2003}, school={Universit{\'e} Paris Sud-Paris XI} } @article{abouzaid2010geometric, title={A geometric criterion for generating the {F}ukaya category}, author={Abouzaid, Mohammed}, journal={Publications Math{\'e}matiques de l'IH{\'E}S}, volume={112}, pages={191--240}, year={2010} } @article{viterbo1999functors, title={Functors and computations in {F}loer homology with applications, I}, author={Viterbo, Claude}, journal={Geometric \& Functional Analysis GAFA}, volume={9}, number={5}, pages={985--1033}, year={1999}, publisher={Springer} } @misc{stacks-project, author = {The {Stacks project authors}}, title = {The Stacks project}, howpublished = {\url{https://stacks.math.columbia.edu}}, year = {2022}, } @article{wendlbeginner, title={A beginner’s overview of symplectic homology}, author={Wendl, Chris}, journal={Preprint. www. mathematik. hu-berlin. de/wendl/pub/SH. pdf} } @article{seidel2006biased, title={A biased view of symplectic cohomology}, author={Seidel, Paul}, journal={Current developments in mathematics}, volume={2006}, number={1}, pages={211--254}, year={2006}, publisher={International Press of Boston} } @article{arnol1980lagrange, title={{L}agrange and {L}egendre cobordisms. I}, author={Arnol'd, Vladimir Igorevich}, journal={Funktsional'nyi Analiz i ego Prilozheniya}, volume={14}, number={3}, pages={1--13}, year={1980}, publisher={Russian Academy of Sciences} } @article{fukaya2007lagrangian, title={{L}agrangian intersection {F}loer theory-anomaly and obstruction, chapter 10}, author={Fukaya, K and Oh, YG and Ohta, H and Ono, K}, journal={Preprint, can be found at http://www. math. kyoto-u. ac. jp/\~{} fukaya/Chapter10071117. pdf}, year={2007} } @article{biran2014lagrangian, title={Lagrangian cobordism and Fukaya categories}, author={Biran, Paul and Cornea, Octav}, journal={Geometric and functional analysis}, volume={24}, number={6}, pages={1731--1830}, year={2014}, publisher={Springer} } @article{bourgeois2009symplectic, title={Symplectic homology, autonomous {H}amiltonians, and {M}orse-{B}ott moduli spaces}, author={Bourgeois, Fr{\'e}d{\'e}ric and Oancea, Alexandru}, journal={Duke mathematical journal}, volume={146}, number={1}, pages={71--174}, year={2009}, publisher={Duke University Press} } @incollection{auroux2014beginner, title={A beginner’s introduction to {F}ukaya categories}, author={Auroux, Denis}, booktitle={Contact and symplectic topology}, pages={85--136}, year={2014}, publisher={Springer} } @article{singer1933three, title={Three-dimensional manifolds and their {H}eegaard diagrams}, author={Singer, James}, journal={Transactions of the American Mathematical Society}, volume={35}, number={1}, pages={88--111}, year={1933}, publisher={JSTOR} } @article{ozsvath2004holomorphic, title={Holomorphic disks and three-manifold invariants: properties and applications}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={Annals of Mathematics}, pages={1159--1245}, year={2004}, publisher={JSTOR} } @article{ozsvath2004introduction, title={An introduction to {H}eegaard {F}loer homology}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={{F}loer homology, gauge theory, and low-dimensional topology}, volume={5}, pages={3--27}, year={2004} } @article{fet1952variational, title={Variational problems on closed manifolds}, author={Fet, Abram Il'ich}, journal={Matematicheskii Sbornik}, volume={72}, number={2}, pages={271--316}, year={1952}, publisher={Russian Academy of Sciences, Steklov Mathematical Institute of Russian~…} }\end{filecontents} \addbibresource{references.bib}\begin{document} \title{Heegaard Diagrams:combinatorial descriptions of 3 manifolds} \maketitle \thispagestyle{firstpage} \begin{definition} \label{def:heegaardSplitting} Let $M$ be a closed 3-manifold. A \emph{genus $g$} Heegaard splitting of $M$ is a decomposition \[M=U_1\cup_{\Sigma_g} U_2\] where $U_1, U_2$ are genus $g$ handlebodies along with an identification of their boundaries (the surface $\Sigma_g)$ with a diffeomorphism. \end{definition} A handlebody is a 3-manifold $U$ with boundary with a collection disks $\{f_i: D^2\to U\}_{i=1}^g$ which are embedded and disjoint, so that $U\setminus \bigcup_{i=1}^g \Im(f_i)=D^3$. \begin{example} \label{exm:heegaardSplitting} Consider the 3-sphere \[M=S^3=\left\{(x_0, x_1, x_2, x_3)\st x_i\in \RR, \sum_{i=1}^3 x_i^2=1.\right\}\] Consider the decomposition of this into two halves along the $z_0$ coordinate: \begin{align*} U_1=\{(x_0, x_1, x_2, x_3)\in S^3 \st x_0\leq 0\}&& U_2=\{(x_0, x_1, x_2, x_3)\in S^3 \st x_0\geq 0\} \end{align*} Then both $U_1, U_2$ are diffeomorphic to the 3-ball, and are glued together by their common boundary $S^2=\Sigma_0$. See \cref{fig:heegaardSplitting}. \begin{figure} \label{fig:heegaardSplitting} \centering \begin{tikzpicture} \draw (-0.5,2) -- (-0.5,-3); \draw[dashed] (-0.5,-0.5) ellipse (1.5 and 0.5); \draw[fill=gray!20, fill opacity=.5] (-0.5,-0.5) ellipse (1.5 and 1.5); \draw (-0.5,2) -- (-0.5,0.9); \clip (2,-0.5) rectangle (-3,-1.5); \draw (-0.5,-0.5) ellipse (1.5 and 0.5); \end{tikzpicture}\caption{After identifying \(S^3\setminus \{(1, 0, 0, 0)\}\) with \(\RR^3\) via stereographic projection, the Heegaard splitting of \(S^3\) is given by taking the unit sphere, which decomposes the sphere into two \(3\)-balls. We also draw the meridinal line \((\cos(\theta), \sin(\theta), 0, 0)\).} \end{figure} \label{exm:heegaardSplitting} \end{example} \begin{proposition} \label{prp:existenceOfHeegaardSplitting} Let $M$ be a closed 3-manifold. There exists a Heegaard splitting for $M$. \label{prp:existenceOfHeegaardSplitting} \end{proposition} We first need this useful lemma. \begin{lemma} \label{lem:handlebodies} Let $U$ be a 3-manifold with boundary. $U$ is a handlebody if and only if there exists a Morse function $f: U\to \RR$ whose \begin{itemize} \item Gradient $\nabla f$ points outward along the boundary of $U$; \item $f$ has only critical points of index $0$ and $1$. \end{itemize} \label{lem:handlebodies} \end{lemma} \begin{proof} \label{prf:existenceOfHeegaardSplitting} Let $f: M\to \RR$ be a self indexing Morse function. Consider the level set $f^{-1}(1.5)$. Because $1.5$ is not a critical value of $f$, this is a smooth surface $\Sigma_g\subset M$. Let $U_1=f^{-1}([0, 1.5])$ and let $U_2=f^{-1}([1.5, 3])$. By \cref{lem:handlebodies}, these are handlebodies. \end{proof} Seeing that we can decompose each 3-manifold into two handlebodies, we ask what extra do we need to equip $U_1, U_2$ and $\Sigma$ with in order to remember $M$. We again turn to Morse theory. When we construct $U_1, U_2$ and $\Sigma$ by a self-indexing Morse function $f: M\to \RR$, we can use the critical points of $f$ to determine the fillings $U_1$ and $U_2$ of $\Sigma_g$. The topology of the filling $U_1$ is recovered by considering how the downward flow spaces of the critical points of $f|_{U_1}$ attach to the $\Sigma_g$. We may additionally assume that $f$ has a unique minimum. The topological information of the filling is recovered by recording how the upward flow spaces $W^\uparrow(p)$ intersect $\Sigma_g$ for $\{p\in \Crit(f), \ind(p)=1\}$. There are $g$ such critical points which we enumerate as $\{p_i\}_{i=1}^g$. These upward flow spaces are 2-dimensional, so $\{\Sigma_g\cap W^\uparrow(p_i)\}_{i=1}^g$ gives $g$ disjoint cycles in $\Sigma_g$. We call these cycles \[\{\alpha_i\}_{i=1}^g:=\{ W^\downarrow(p_i)\cap \Sigma_g\}_{p_i\in \Crit(f), \deg(p_i)=1}.\] Similarly, the filling $U_2$ is recovered by the attaching data for the downward flow spaces of index 2 critical points of $f$, \[\{\beta\}_{i=1}^g:=\{ W^\downarrow(p_i)\cap \Sigma_g\}_{p_i\in \Crit(f), \ind(p_i)=1}.\] \begin{definition} \label{def:heegaardDiagram} A \emph{Heegaard diagram} is a triple $(\Sigma_g, \{\alpha_i\}_{i=1}^g, \{\beta_i\}_{i=1}^g$). Here, $\Sigma_g$ is a genus $g$ surface and $\{\alpha_i\}_{i=1}^g, \{\beta_i\}_{i=1}^g$ are collections of smooth 1-cycles in $\Sigma_g$ such that \begin{itemize} \item $\Sigma_g\setminus \{\alpha_i\}_{i=1}^g, \Sigma_g\setminus \{\beta_i\}_{i=1}^g$ are connected and; \item $\alpha_i\cap \alpha_j=\emptyset = \beta_i \cap \beta_j$ whenever $i\neq j$. \end{itemize} \end{definition} We will write $\underline \alpha, \underline \beta$ for $\{\alpha_i\}_{i=1}^g, \{\beta_i\}_{i=1}^g$. These are called the \emph{attaching cycles} of the Heegaard diagram. The example given in \cref{exm:heegaardSplitting} is of genus 0, we do not have any attaching cycles for that example. \begin{example} \label{exm:heegaardDiagram3Sphere} Consider the 3-sphere \[S^3=\{(z_1, z_2)\st z_i\in \CC, |z_1|^2+|z_2|^2=1\}.\] We will first describe a new Heegaard diagram for $S^3$. Take the function $f=|z_1|^2-|z_2|^2$, and consider the sets \begin{align*} U_1=f^{-1}([0, 1]) && U_2=f^{-1}([-1, 0]) \end{align*} These sets are fillings of the boundary \[\Sigma_1:=f^{-1}(0)=\left\{(z_1, z_2)\st |z_1|^2=\frac{1}{2}, |z_2|^2=\frac{1}{2}\right\}=\{(e^{i\theta_1}, e^{i\theta_2}), \theta_1, \theta_2\in S^1\}.\] which is a torus. Observe that $\grad f$ is transverse to the boundary of $\Sigma_1$, and that the critical locus of $f$ can be parameterized by the cycles $\{(e^{i\theta_1}, 0)\}\sqcup \{(0, e^{i\theta_2})\}$. It follows the sets $U_1, U_2$ are diffeomorphic to $S^1\times D^2$ and $D^2\times S^1$ respectively. These are handlebodies, giving us a Heegaard decomposition. We now Morsify $f$ by taking a perturbation. Take $\rho:[-1, 1]\to [0, \eps]$ satisfying the constraints: \begin{align*} \rho|_{[-1, -.5]}=\eps/10 && \rho|_{[0, 1]}=0 && |\rho'|<\eps \end{align*} The the function $f+ \rho(f)\cos(\theta_1)+\rho(-f)\cos(\theta_2)$ has 4 critical points at $(\pm 1 , 0)$ and $(0, \pm 1)$. The attaching disks associated to the index 2 and index 1 critical points give the cycle $\alpha_1=S^1\ times \{1\}$ and $\beta_1=\{1\}\times S^1$ inside $T^2$. See \cref{fig:heegaardDiagram3Sphere}. \begin{figure} \label{fig:heegaardDiagram3Sphere} \centering \begin{tikzpicture}[scale=2] \begin{scope}[] \clip (-1.8,-1.6) rectangle (0,-0.2); \draw (-1.2,-1) ellipse (0.2 and 0.5); \end{scope} \fill[red!20] (-1.2,-1) ellipse (0.2 and 0.5); \node[] at (-1.2,-1) {$\times$}; \draw[fill=gray!20, fill opacity=.9] (-1.2,-0.5) ellipse (2 and 1); \begin{scope}[shift={(2.2,-0.6)}] \fill[white] plot[smooth, tension=0.7] coordinates { (-3.68,0.2) (-3.4,0.1) (-3.14,0.2) } plot[smooth, tension=0.7] coordinates {(-3.68,0.2) (-3.4,0.34) (-3.14,0.2)}; \draw plot[smooth, tension=0.7] coordinates {(-3.8,0.34) (-3.68,0.2) (-3.4,0.1) (-3.14,0.2) (-3,0.34)}; \draw plot[smooth, tension=0.7] coordinates {(-3.68,0.2) (-3.4,0.34) (-3.14,0.2)}; \end{scope} \draw[draw=blue, fill=blue!20, fill opacity=.9] (-1.2,-0.4) node (v1) {} ellipse (1.2 and 0.4); \fill[fill=blue!20, fill opacity=.9] (-2.4,-0.4) .. controls (-2.4,-0.2) and (-1.6,1) .. (-1.2,1) .. controls (-0.8,1) and (0,-0.2) .. (0,-0.4) .. controls (0,-0.2) and (-0.8,-0.2) .. (-1.2,-0.2) .. controls (-1.6,-0.2) and (-2.4,-0.2) .. (-2.4,-0.4); \draw (-2.4,-0.4) .. controls (-2.4,-0.2) and (-1.6,1) .. (-1.2,1) .. controls (-0.8,1) and (0,-0.2) .. (0,-0.4); \begin{scope}[] \clip (-0.8,-1.6) rectangle (v1); \draw[red] (-1.2,-1) ellipse (0.2 and 0.5); \end{scope} \node[left] at (-1.2,-1) {$p$}; \node[above] at (-1.2,1) {$q$}; \node at (-1.2,1) {$\times$}; \node at (-2.25,-0.71) {$\alpha$}; \node at (-0.93,-1.18) {$\beta$}; \node at (-2.8,-0.6) {$\Sigma_1$}; \end{tikzpicture}\caption{A Heegaard diagram for \(S^3\). The attaching cycles \(\alpha, \beta\) are drawn in red in the torus. The disks in red and blue represent the downward and upward flow spaces of the critical points \(p, q\).} \end{figure}\end{example} Every Heegaard diagram specifies a 3-manifold, however a single 3-manifold can have many different presentations with different Heegaard diagrams. We have already seen 2 different Heegaard diagrams for $S^3$ in \cref{exm:heegaardSplitting} and \cref{exm:heegaardDiagram3Sphere}. If we are to study 3-manifolds via their Heegaard diagram, we need to understand when two diagrams give presentations of the same manifold. We first describe some operations which modify a Heegaard diagram, but produce the same 3-manifold. \begin{definition} \label{def:heegaardStabilization} Let $(\Sigma_g, \{\alpha_i\}_{i=1}^g, \{\beta_i\}_{i=1}^g)$ be a Heegaard diagram. Let $p\in \Sigma_g$ be a point avoiding the cycles $\alpha_i, \beta_i$. The \emph{stabilization of $\Sigma_g$ at $p$} is the diagram $(\Sigma_g \#_p T^2, \{\alpha_i\}_{i=1}^{g+1}, \{\beta_i\}_{i=1}^{g+1})$ where $\alpha_{g+1}, \beta_{g+1}$ are the meridional and longitudinal classes of $T^2$. \end{definition} One way to see that stabilization of a Heegaard diagram produces the same manifold comes from Morse theory. Consider $\Sigma_g$ as the level set of a self-indexing Morse function $f$. Suppose that we wanted to modify our Morse function to $\tilde f$ by adding in a pair of critical points $p, q$ so that $\ind(p)=1$ and $\ind(q)=2$. We imagine that the critical points would appear on opposite sides of $\Sigma_g$, and be connected by a single flow line. Furthermore, $\tilde \Sigma_{g+1}=\tilde f(1.5)$, the new level set, would be of genus $g+1$. By applying surgery along either the attaching circles $W^\downarrow(p)\cap \tilde \Sigma_{g+1}$ or $W^\uparrow(q)\cap \tilde \Sigma_{g+1}$, we obtain $\Sigma_g$. See \cref{fig:heegaardStabilization}. \begin{figure} \label{fig:heegaardStabilization} \centering \begin{tikzpicture} \draw (-4,-1) -- (-4,0.5) ; \draw[opacity=.5,fill= blue!20] (-2.5,0.5) ellipse (3 and 1); \draw[opacity=.5, fill=blue!20] (4.5,0.5) node (v1) {} ellipse (3 and 1); \draw (6,-2); \draw[->](-4,0.5) -- (-4,2.5); \node at (-4.5,2.5) {$f$}; \node at (0,0.5) {$\Sigma_g$}; \draw[dashed] (-2.5,0.5) ellipse (3 and 3); \draw[dashed] (v1) ellipse (3 and 3); \draw[fill=red!20] (4.5,1.5) ellipse (0.25 and 0.5); \draw[opacity=.5, fill=blue!20] (2.5,0.5) .. controls (2.75,0.5) and (3.5,2) .. (4.5,2) .. controls (5.5,2) and (6.25,0.5) .. (6.5,0.5) .. controls (6.25,0.5) and (6.25,0.5) .. (5.5,0.5) .. controls (5.75,0.5) and (5,1) .. (4.5,1) .. controls (4,1) and (3.25,0.5) .. (3.5,0.5); \node[right] at (4.5,1.5) {$p$}; \node[fill=black, circle, scale=.2] at (4.5,1.5) {}; \begin{scope}[] \clip (5,1) rectangle (4.5,2); \draw (4.5,1.5) ellipse (0.25 and 0.5); \end{scope} \draw[fill=green!20] (3.5,0.5) .. controls (3,0.5) and (4,1) .. (4.5,1) .. controls (5,1) and (6,0.5) .. (5.5,0.5)--cycle; \node[right] at (4.5,0.7) {$q$}; \node[circle, fill=black, scale=.2] at (4.5,0.7) {}; \begin{scope}[] \fill[opacity=.5, fill=blue!20] plot[smooth, tension=.7] coordinates {(2.5,0.5) (3,0.3) (3.5,0.5)}; \end{scope}\begin{scope}[shift={(3,0)}] \fill[opacity=0.5, fill=blue!20] plot[smooth, tension=0.7] coordinates {(2.5,0.5) (3,0.3) (3.5,0.5)}; \end{scope}\node at (6.5,1) {$\tilde \Sigma_g$}; \draw[red,->] (4.5,1.5) -- (4.5,1.1); \draw[red] (4.5,1.1) -- (4.5,0.7); \end{tikzpicture}\caption{From the perspective of Morse theory, stabilization comes from the creation of a pair of cancelling critical points.} \end{figure}\begin{definition} \label{def:heegaardMoves} Let $(\Sigma_g,\{\alpha_i\}_{i=1}^g, \{\beta_i\}_{i=1}^g)$ be a Heegaard diagram. We say that another diagram $(\Sigma_g,\{\alpha_i'\}_{i=1}^{g}, \{\beta_i'\}_{i=1}^{g})$ is related to $(\Sigma_g,\{\alpha_i\}_{i=1}^g, \{\beta_i\}_{i=1}^g)$ by an \begin{itemize} \item isotopy if the sets $\{\alpha_i\}_{i=1}^g, \{\alpha_i'\}^g$ are isotopic in $\Sigma_g$, or $\{\beta_i\}_{i=1}^g, \{\beta_i'\}^g$ are isotopic in $\Sigma_g$. \item handle slide if $\alpha_i=\alpha_{i'}$ for $i\neq g$, and the curves $\alpha_{g-1}, \alpha_g, \alpha_g'$ bound a pair of pants in $\Sigma_g$ disjoint from $\{\alpha_i\}_{i=1}^{g-2}$ (or similarly for the $\beta_i$). See \cref{fig:handleslide} \end{itemize} \end{definition} \begin{figure} \label{fig:handleslide} \centering \begin{tikzpicture} \draw[fill=gray!20] (-0.5,1.5) .. controls (-1.5,1.5) and (-1.5,0) .. (-1.5,-0.5) .. controls (-1.5,-1) and (-1,-2) .. (1.5,-2) .. controls (4,-2) and (4.5,-1) .. (4.5,-0.5) .. controls (4.5,0) and (4.5,1.5) .. (3.5,1.5) .. controls (2.5,1.5) and (2,1) .. (2,0.5) .. controls (2,0) and (1,0) .. (1,0.5) .. controls (1,1) and (0.5,1.5) .. (-0.5,1.5); \begin{scope}[] \draw[fill=white] (0,0.5) .. controls (0,1) and (-0.5,0.5) .. (-0.5,0) .. controls (-0.5,-1) and (1,-1.5) .. (1,-1) .. controls (1,-0.5) and (0,0) .. (0,0.5); \end{scope} \begin{scope}[xscale=-1, shift={(-3,0)}] \draw[fill=white] (0,0.5) .. controls (0,1) and (-0.5,0.5) .. (-0.5,0) .. controls (-0.5,-1) and (1,-1.5) .. (1,-1) .. controls (1,-0.5) and (0,0) .. (0,0.5); \end{scope} \begin{scope}[shift={(1,1.5)}] \draw[dashed] (1.5,-1) ellipse (0.5 and 0.25); \clip (2,-1) rectangle (1,-1.75); \draw (1.5,-1) ellipse (0.5 and 0.25); \end{scope} \begin{scope}[shift={(0,0)}] \draw[dashed] (1.5,-1) ellipse (0.5 and 0.25); \clip (2,-1) rectangle (1,-1.75); \draw (1.5,-1) ellipse (0.5 and 0.25); \end{scope} \begin{scope}[shift={(-1,1.5)}] \draw[dashed] (1.5,-1) ellipse (0.5 and 0.25); \clip (2,-1) rectangle (1,-1.75); \draw (1.5,-1) ellipse (0.5 and 0.25); \end{scope} \node at (1.5,-1) {$\alpha_{g-1}$}; \node at (0.5,0.5) {$\alpha_g$}; \node at (2.5,0.5) {$\alpha_g'$}; \end{tikzpicture}\caption{The cycles \(\alpha_{g-1}, \alpha_g\)and \(\alpha_g'\) are related by handleslide} \end{figure}\begin{theorem}\cite{singer1933three} \label{thm:heegaardMoves} \label{thm:heegaardMoves} Suppose that $(\Sigma_g,\underline \alpha, \underline \beta)$ and $(\Sigma_{g'},\underline \alpha', \underline \beta')$ are Heegaard diagrams for $M$. There exist a sequence of Heegaard moves and stabilizations taking one to the other. \end{theorem} It follows that in order to construct 3-manifold invariants, one needs to find quantities associated to the Heegaard diagram which are invariant under stabilizations, isotopies, and handles slides. Heegaard-Floer cohomology provides such an invariant.\printbibliography \end{document}