\documentclass[11 pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,titlesec} \usepackage{hyperref} \usepackage{tikz} \usepackage{verbatim} \usepackage{accents} \usepackage[citestyle=alphabetic,bibstyle=alphabetic,backend=bibtex]{biblatex} \usepackage{todonotes} \usepackage[american]{babel} \usepackage{fancyhdr} \hypersetup{colorlinks=false} \usetikzlibrary{calc, decorations.pathreplacing,shapes.misc} \usetikzlibrary{decorations.pathmorphing} \usepackage[left=1in,top=1in,right=1in]{geometry} \usepackage[capitalize]{cleveref} \newcommand{\mathcolorbox}[2]{\colorbox{#1}{$\displaystyle #2$}} \newcommand{\xxx}{T base with combinatorial potential data } \newcommand{\Xxx}{T base with combinatorial potential data } \newcommand{\xxxc}{combinatorial potential stratified space } \newcommand{\Xxxc}{combinatorial potential stratified space } \newcommand{\argument}{symplectic character } \newcommand{\arguments}{symplectic characters } \newcommand{\snip}[2]{#1} \newtheorem{theorem}{Theorem}[section] \newtheorem{lem}[theorem]{Lemma} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{notation}[theorem]{Notation} \newtheorem{question}[theorem]{Question} \theoremstyle{remark} \newtheorem{rem}[theorem]{Remark} \newtheorem{remark}[theorem]{Remark} \crefname{rem}{Remark}{Remarks} \Crefname{rem}{Remark}{Remarks} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{example}[theorem]{Example} \newenvironment{construction}{}{} \newenvironment{exposition}{}{} \newenvironment{application}{}{} \theoremstyle{definition} \newtheorem{df}[theorem]{Definition} \newtheorem{definition}[theorem]{Definition} \titleformat*{\section}{\normalsize \bfseries \filcenter} \titleformat*{\subsection}{\normalsize \bfseries } \newtheorem{mainthm}{Theorem} \Crefname{mainthm}{Theorem}{Theorems} \newtheorem{maincor}[mainthm]{Corollary} \Crefname{maincor}{Corollary}{Corollaries} \renewcommand*{\themainthm}{\Alph{mainthm}} \makeatletter \def\namedlabel#1#2{\begingroup \def\@currentlabel{#2}% \label{#1}\endgroup } \makeatother \fancypagestyle{firstpage}{% \fancyhf{} \renewcommand\headrulewidth{0pt} \fancyfoot[R]{Original text at \texttt{ \href{http://jeffhicks.net/snippets/index.php?tag=art_symplectoAndHamiltonian}{snippets/art\_symplectoAndHamiltonian}}} } \newcommand{\wt}{\widetilde} \newcommand{\wh}{\widehat} \newcommand{\wb}{\overline} \newcommand{\bb}{\mathbb} \newcommand{\scr}{\mathscr} \newcommand{\RR}{\mathbb R} \newcommand{\ZZ}{\mathbb Z} \newcommand{\CC}{\mathbb C} \newcommand{\TT}{\mathbb T} \newcommand{\NN}{\mathbb N} \newcommand{\PP}{\mathbb P} \newcommand{\LL}{\mathbb L} \newcommand{\II}{\mathbb I} \newcommand{\CP}{\mathbb{CP}} \newcommand{\del}{\nabla} \newcommand{\pp}{\mathbf{m}} \newcommand{\into}{\hookrightarrow} \newcommand{\emprod}{m} \newcommand{\tensor}{\otimes} \renewcommand{\Re}{\text{Re}} \renewcommand{\Im}{\text{Im}} \newcommand{\eps}{\varepsilon} \newcommand{\CF}{CF^\bullet} \newcommand{\HF}{HF^\bullet} \newcommand{\SH}{SH^\bullet} \newcommand{\core}{\mathfrak{c}} \newcommand{\cocore}{\mathfrak{u}} \newcommand{\stp}{\mathfrak{f}} \newcommand{\li}{i} \newcommand{\ot}{\leftarrow} \newcommand{\Spinc}{\text{Spin}^c} \newcommand{\ev}{ev} \newcommand{\st}{\;:\;} \newcommand{\OP}{\mathcal O_{\mathbb P^1}} \newcommand{\OPP}{\mathcal O_{\mathbb P\times \mathbb P}} \newcommand{\gentime}{\text{\ClockLogo}} \newcommand{\q}{m} \newcommand{\HeF}{\widehat{CF}^\bullet} \newcommand{\HHeF}{\widehat{HF}^\bullet} \newcommand{\p}{\eta} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\cone}{cone} \DeclareMathOperator{\dg}{dg} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Conn}{Conn} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Flux}{Flux} \DeclareMathOperator{\Crit}{Crit} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\Ext}{Ext} \DeclareMathOperator{\TropB}{TropB} \DeclareMathOperator{\weight}{wt} \DeclareMathOperator{\Span}{span} \DeclareMathOperator{\Coh}{Coh} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Fuk}{Fuk} \DeclareMathOperator{\str}{star} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\grad}{grad} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\Bl}{Bl} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Tw}{Tw} \DeclareMathOperator{\Int}{Int} \DeclareMathOperator{\Arg}{\mathbf{M}}\begin{filecontents}{references.bib} @article{ballard2012hochschild, title={Hochschild dimensions of tilting objects}, author={Ballard, Matthew and Favero, David}, journal={International Mathematics Research Notices}, volume={2012}, number={11}, pages={2607--2645}, year={2012}, publisher={OUP} } @article{craw2007explicit, title={Explicit methods for derived categories of sheaves}, author={Craw, Alastair}, publisher={Citeseer} } @article{weinstein1971symplectic, title={Symplectic manifolds and their {L}agrangian submanifolds}, author={Weinstein, Alan}, journal={Advances in Mathematics}, volume={6}, number={3}, pages={329--346}, year={1971}, publisher={Academic Press} } @article{hanlon2022aspects, title={Aspects of functoriality in homological mirror symmetry for toric varieties}, author={Hanlon, A and Hicks, J}, journal={Advances in Mathematics}, volume={401}, pages={108317}, year={2022}, publisher={Elsevier} } @article{biran2013lagrangian, title={{L}agrangian cobordism. {I}}, author={Biran, Paul and Cornea, Octav}, journal={Journal of the American Mathematical Society}, volume={26}, number={2}, pages={295--340}, year={2013} } @article{tanaka2016fukaya, title={The Fukaya category pairs with Lagrangian cobordisms}, author={Tanaka, Hiro Lee}, journal={arXiv preprint arXiv:1607.04976}, year={2016} } @book{seidel2008fukaya, title={Fukaya categories and Picard-Lefschetz theory}, author={Seidel, Paul}, volume={10}, year={2008}, publisher={European Mathematical Society} } @article{seidel2003long, title={A long exact sequence for symplectic {F}loer cohomology}, author={Seidel, Paul}, journal={Topology}, volume={42}, pages={1003--1063}, year={2003} } @article{da2001lectures, title={Lectures on symplectic geometry}, author={da Silva, Ana Cannas}, journal={Lecture Notes in Mathematics}, volume={1764}, year={2001}, publisher={Springer} } @article{polterovich1991surgery, title={The surgery of {L}agrange submanifolds}, author={Polterovich, Leonid}, journal={Geometric \& Functional Analysis GAFA}, volume={1}, number={2}, pages={198--210}, year={1991}, publisher={Springer} } @misc{perutz2008handleslide, doi = {10.48550/ARXIV.0801.0564}, url = {https://arxiv.org/abs/0801.0564}, author = {Perutz, Timothy}, keywords = {Symplectic Geometry (math.SG), Geometric Topology (math.GT), FOS: Mathematics, FOS: Mathematics, 53D12; 53D40; 57M27; 32U40}, title = {Hamiltonian handleslides for {H}eegaard {F}loer homology}, publisher = {arXiv}, year = {2008}, copyright = {Assumed arXiv.org perpetual, non-exclusive license to distribute this article for submissions made before January 2004} } @incollection{audin1994symplectic, title={Symplectic rigidity: {L}agrangian submanifolds}, author={Audin, Mich{\`e}le and Lalonde, Fran{\c{c}}ois and Polterovich, Leonid}, booktitle={Holomorphic curves in symplectic geometry}, pages={271--321}, year={1994}, publisher={Springer} } @phdthesis{oancea2003suite, title={La suite spectrale de {L}eray-{S}erre en homologie de {F}loer des vari{\'e}t{\'e}s symplectiques compactes {\`a} bord de type contact}, author={Oancea, Alexandru}, year={2003}, school={Universit{\'e} Paris Sud-Paris XI} } @article{abouzaid2010geometric, title={A geometric criterion for generating the {F}ukaya category}, author={Abouzaid, Mohammed}, journal={Publications Math{\'e}matiques de l'IH{\'E}S}, volume={112}, pages={191--240}, year={2010} } @article{viterbo1999functors, title={Functors and computations in {F}loer homology with applications, I}, author={Viterbo, Claude}, journal={Geometric \& Functional Analysis GAFA}, volume={9}, number={5}, pages={985--1033}, year={1999}, publisher={Springer} } @misc{stacks-project, author = {The {Stacks project authors}}, title = {The Stacks project}, howpublished = {\url{https://stacks.math.columbia.edu}}, year = {2022}, } @article{wendlbeginner, title={A beginner’s overview of symplectic homology}, author={Wendl, Chris}, journal={Preprint. www. mathematik. hu-berlin. de/wendl/pub/SH. pdf} } @article{seidel2006biased, title={A biased view of symplectic cohomology}, author={Seidel, Paul}, journal={Current developments in mathematics}, volume={2006}, number={1}, pages={211--254}, year={2006}, publisher={International Press of Boston} } @article{arnol1980lagrange, title={{L}agrange and {L}egendre cobordisms. I}, author={Arnol'd, Vladimir Igorevich}, journal={Funktsional'nyi Analiz i ego Prilozheniya}, volume={14}, number={3}, pages={1--13}, year={1980}, publisher={Russian Academy of Sciences} } @article{fukaya2007lagrangian, title={{L}agrangian intersection {F}loer theory-anomaly and obstruction, chapter 10}, author={Fukaya, K and Oh, YG and Ohta, H and Ono, K}, journal={Preprint, can be found at http://www. math. kyoto-u. ac. jp/\~{} fukaya/Chapter10071117. pdf}, year={2007} } @article{biran2014lagrangian, title={Lagrangian cobordism and Fukaya categories}, author={Biran, Paul and Cornea, Octav}, journal={Geometric and functional analysis}, volume={24}, number={6}, pages={1731--1830}, year={2014}, publisher={Springer} } @article{bourgeois2009symplectic, title={Symplectic homology, autonomous {H}amiltonians, and {M}orse-{B}ott moduli spaces}, author={Bourgeois, Fr{\'e}d{\'e}ric and Oancea, Alexandru}, journal={Duke mathematical journal}, volume={146}, number={1}, pages={71--174}, year={2009}, publisher={Duke University Press} } @incollection{auroux2014beginner, title={A beginner’s introduction to {F}ukaya categories}, author={Auroux, Denis}, booktitle={Contact and symplectic topology}, pages={85--136}, year={2014}, publisher={Springer} } @article{singer1933three, title={Three-dimensional manifolds and their {H}eegaard diagrams}, author={Singer, James}, journal={Transactions of the American Mathematical Society}, volume={35}, number={1}, pages={88--111}, year={1933}, publisher={JSTOR} } @article{ozsvath2004holomorphic, title={Holomorphic disks and three-manifold invariants: properties and applications}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={Annals of Mathematics}, pages={1159--1245}, year={2004}, publisher={JSTOR} } @article{ozsvath2004introduction, title={An introduction to {H}eegaard {F}loer homology}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={{F}loer homology, gauge theory, and low-dimensional topology}, volume={5}, pages={3--27}, year={2004} } @article{fet1952variational, title={Variational problems on closed manifolds}, author={Fet, Abram Il'ich}, journal={Matematicheskii Sbornik}, volume={72}, number={2}, pages={271--316}, year={1952}, publisher={Russian Academy of Sciences, Steklov Mathematical Institute of Russian~…} }\end{filecontents} \addbibresource{references.bib}\begin{document} \title{Symplectomorphisms and Hamiltonian isotopies } \maketitle \thispagestyle{firstpage}In previous definitions, we've presented \begin{itemize} \item some diffeomorphic spaces (i.e. $T^*T^n$ and $(\CC^*)^n$) which should be considered the same as symplectic manifolds. \item some spaces which are diffeomorphic (i.e. $S^2$ and itself) which can be equipped with clearly different symplectic structures (i.e. $\text{vol}_g$ and $\text{vol}_{2g}$). \end{itemize} We now introduce an equivalence relation for symplectic structures on a manifold. \begin{definition} \label{def:symplectomorphism} Let $(X, \omega)$ and $(X', \omega')$ be symplectic manifolds, and $\phi: X\to X' $ be a diffeomorphism. We call $\phi$ a \emph{symplectomorphism} if \[\phi^*\omega'=\omega.\] Given an embedding $\psi: X\to X'$, we say that $\psi$ is a \emph{symplectic embedding} if \[\psi^*\omega'=\omega\] \end{definition} One property of the canonical symplectic structure on the cotangent bundle $T^*Q$ is that the symplectomorphism type of $T^*Q$ is only dependent on the diffeomorphism type of $Q$ \cite{da2001lectures}. Let $f: Q_1\to Q_2$ be a diffeomorphism. Define the \emph{lift} of $f$ to be a map $f_\#: T^*Q_1\to T^* Q_2$ defined by \[f_\#(q,p)=(f(q), ((df_q)^*)^{-1}p\] The lift plays well with the tautological 1-form, in the sense that if $\lambda_i$ is the tautological 1-form for $T^*Q_i$, then $(f_\#)^*\lambda_2=\lambda_1$. A particularly interesting type of symplectomorphism is one which arises as an isotopy. A symplectic isotopy is a smooth 1-parameter family of maps $\phi_t: X\times I\to X$ which for fixed values of $t$ give a symplectomorphism, and start at the identity (in the sense that $\phi_0=\operatorname{id}_X$). These are examples of smooth isotopies and so they can equivalently be described as the flow of a time-dependent vector field. \begin{definition} \label{def:flow} Given a time-dependent vector field $V_t$, the \emph{flow associated to $V$} is the function $\phi_t: X\times \RR\to X$ which \begin{itemize} \item for all $t$, $\phi_t:X\to X$ is a diffeomorphisms and; \item is the identity at time 0 so that $\phi_0=\operatorname{id}_M$ and; \item generates the vector field $V_t$ in the sense that \[(V_t)_p:=\frac{d}{ds}\phi_s(\phi^{-1}_t(p))|_{s=t}.\] \end{itemize} We say that \emph{$ V_t$ is the infinitesimal generator} associated to $\phi_t$. \end{definition} There is an equivalence between vector fields and flows. \begin{theorem} \label{thm:existenceOfFlow} On compact manifolds, every time-dependent vector field has a well defined flow. \end{theorem} One can check that a smooth isotopy $\phi_t$ is a symplectic isotopy by verifying that the symplectic form is preserved by the infinitesimal generator $V_t$. This yields an easy to check criterion. \begin{proposition} \label{prp:exactsymplectichamiltonian} $\phi_t$ is a symplectic isotopy if and only if its infinitesimal generator $V_t$ satisfies \[d(\iota_{V_t}\omega)=0.\] \end{proposition} \begin{proof} We prove the forward direction, using that $\phi^*_t\omega=\omega$ for all $t$. By taking the derivative with respect to $t$ of both sides, we obtain: \begin{align*} 0=&\frac{d}{dt}\phi^*\omega =\phi^*_t\mathcal L_{V_t}\omega \end{align*} Since $\phi$ is a diffeomorphism, this is equivalent to the vanishing of $\mathcal L_{V_t}\omega$, \begin{align*} 0=& \mathcal L_{V_t}\omega \end{align*} Applying Cartan's formula, and using that $\omega$ is closed, \begin{align*} 0=&d(\iota_{V_t}\omega)+ \iota_{V_t}(d\omega)=d(\iota_{V_t}\omega). \end{align*} This means that $\iota_{V_t}\omega$ is closed. \end{proof} One could ask for the stronger condition of exactness for the 1-form $\iota_{V_t}\omega$. In this case, we can describe vector field $V_t$ by a function on $X$. \begin{definition} \label{def:hamiltonianVectorField} Let $(X, \omega)$ be a symplectic manifold, and $H: X\to \RR$ is a smooth function. The \emph{Hamiltonian vector field of $H$} is the unique vector field $V_H$ such that $dH=\iota_{V_H}\omega$. \end{definition} The uniqueness of this vector field arises from the non-degeneracy of the symplectic form $\omega$. This additionally means that to every exact symplectic isotopy we can associate a generating Hamiltonian function. The Hamiltonian isotopies give a large set of easy-to-describe symplectic isotopies, and the relation between Hamiltonian isotopies and all symplectic isotopies has a nice interpretation in terms of the topology of $X$. \begin{corollary} If $H^1(X, \RR)=0$, then every symplectic isotopy is Hamiltonian. \end{corollary} \begin{example} \label{exm:hamiltonsEquations} Suppose that we are working in $\RR^{2n}=(q_1, \ldots , q_n,p_1, \ldots p_n) $, equipped with the standard symplectic form $\omega= \sum_{i=1}^n dp_i \wedge dq_i$. We can compute the Hamiltonian vector field for $H: \RR^{2n}\to \RR$, in local coordinates as \[V_H=\sum_{k=1}^n \left(a_k \partial_{q_k}+b_k \partial_{p_k}\right)\] where the functions $a_k$ and $b_k$ are given by the formulas \begin{align*} \frac{\partial p_k}{\partial H}=-b_k & & \frac{\partial q_k}{\partial H}=a_k. \end{align*} \end{example} A notable feature of Hamiltonian flow $V_H$ is that it preserves the level sets of $H$, as \[V_H(H)=dH(V_H)=\omega(V_H, V_H)=0.\] \begin{example} \label{exm:sphereRotation} Consider $S^2=\{(x_0, x_1, x_2)\;|\;x_0^2+x_1^2+x_2^2=1\}$ equipped with the symplectic form agreeing with the standard metric induced from $\RR^3$. Take the Hamiltonian \begin{align*} H:S^2\to&\RR\\ (x_0,x_1,x_2)\mapsto& x_2 \end{align*} as drawn in \cref{fig:hamiltonianOnSphere}. Since Hamiltonian flow preserves the level sets of $H$, we know that the latitudinal slices are orbits under the action of the Hamiltonian flow. To show that the Hamiltonian flow uniformly rotates the sphere, consider the map $\phi:S^2\setminus\{(0,0,1), (0,0,-1)\}\into S^1\times \RR\subset \RR^3$, where $S^1\times \RR=\{(x_0, x_1, x_2)\;|\; x_0^2+x_1^2=1\}$, and the embedding is given by the latitudinal projection. This projection (the \emph{Gall-Peters} map projection) is area-preserving, and so $\phi$ is a symplectic embedding. In these new coordinates, $\omega=d\theta\wedge dx_2$ and $H=x_2$. In the Gall-Peters' coordinates, $V_H=\partial_\theta$. \begin{figure} \label{fig:hamiltonianOnSphere} \centering \begin{tikzpicture} \draw[fill=gray!20] (-2,2) ellipse (1.5 and 1.5); \begin{scope}[] \clip (-4,2) rectangle (0,3); \draw[dashed] (-2,2) ellipse (1.5 and 0.5); \end{scope} \begin{scope}[] \clip (-4,2) rectangle (0,1); \draw (-2,2) ellipse (1.5 and 0.5); \end{scope} \draw (2.5,3.5) -- (2.5,0.5); \draw[->] (0.5,2) -- (1.5,2); \node[fill=white] at (1,2) {$H$}; \draw[dotted] (2.5,4) -- (2.5,3.5) (2.5,0.5) -- (2.5,0); \node at (-2,4.5) {$S^2$}; \node at (2.5,4.5) {$\mathbb R$}; \node[right] at (3,3.5) {Fixed Point}; \node[right] at (3,2) {Turning Counterclockwise}; \node[right] at (3,0.5) {Fixed Point}; \node[circle, fill=black, scale=.3] at (-2,3.5) {}; \node[circle, fill=black, scale=.3] at (-2,0.5) {}; \node[circle, fill=black, scale=.3] at (2.5,0.5) {}; \node[circle, fill=black, scale=.3] at (2.5,3.5) {}; \end{tikzpicture}\caption{The Hamiltonian flow of the standard height function rotates the sphere counterclockwise relative to the north pole} \end{figure} \end{example} The Hamiltonian flow is sometimes called the symplectic gradient. In the setting where we have a compatible triple $(X, \omega,g, J)$, the Hamiltonian flow and gradient are related by the almost complex structure. \begin{lemma} \label{lem:gradients} Let $(X, \omega, g, J)$ be a compatible triple. Let $H:X\to \RR$ be a Hamiltonian. \[\grad H = J V_H\] \end{lemma} \begin{proof} This is a direct computation. On any test vector $v$, \begin{align*} g(J V_H, v)=\omega(V_H, v)=dH(v)= g(\grad(H), v) \end{align*} Because $g$ is nondegenerate, $\grad(H)=JV_H$. \end{proof}\printbibliography \end{document}