\documentclass[11 pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,titlesec} \usepackage{hyperref} \usepackage{tikz} \usepackage{verbatim} \usepackage{accents} \usepackage[citestyle=alphabetic,bibstyle=alphabetic,backend=bibtex]{biblatex} \usepackage{todonotes} \usepackage[american]{babel} \usepackage{fancyhdr} \hypersetup{colorlinks=false} \usetikzlibrary{calc, decorations.pathreplacing,shapes.misc} \usetikzlibrary{decorations.pathmorphing} \usepackage[left=1in,top=1in,right=1in]{geometry} \usepackage[capitalize]{cleveref} \newcommand{\mathcolorbox}[2]{\colorbox{#1}{$\displaystyle #2$}} \newcommand{\xxx}{T base with combinatorial potential data } \newcommand{\Xxx}{T base with combinatorial potential data } \newcommand{\xxxc}{combinatorial potential stratified space } \newcommand{\Xxxc}{combinatorial potential stratified space } \newcommand{\argument}{symplectic character } \newcommand{\arguments}{symplectic characters } \newcommand{\snip}[2]{#1} \newtheorem{theorem}{Theorem}[section] \newtheorem{lem}[theorem]{Lemma} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{notation}[theorem]{Notation} \newtheorem{question}[theorem]{Question} \theoremstyle{remark} \newtheorem{rem}[theorem]{Remark} \newtheorem{remark}[theorem]{Remark} \crefname{rem}{Remark}{Remarks} \Crefname{rem}{Remark}{Remarks} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{example}[theorem]{Example} \newenvironment{construction}{}{} \newenvironment{exposition}{}{} \newenvironment{application}{}{} \theoremstyle{definition} \newtheorem{df}[theorem]{Definition} \newtheorem{definition}[theorem]{Definition} \titleformat*{\section}{\normalsize \bfseries \filcenter} \titleformat*{\subsection}{\normalsize \bfseries } \newtheorem{mainthm}{Theorem} \Crefname{mainthm}{Theorem}{Theorems} \newtheorem{maincor}[mainthm]{Corollary} \Crefname{maincor}{Corollary}{Corollaries} \renewcommand*{\themainthm}{\Alph{mainthm}} \makeatletter \def\namedlabel#1#2{\begingroup \def\@currentlabel{#2}% \label{#1}\endgroup } \makeatother \fancypagestyle{firstpage}{% \fancyhf{} \renewcommand\headrulewidth{0pt} \fancyfoot[R]{Original text at \texttt{ \href{http://jeffhicks.net/snippets/index.php?tag=art_tropicalGeometrySeminarOutline}{snippets/art\_tropicalGeometrySeminarOutline}}} } \newcommand{\wt}{\widetilde} \newcommand{\wh}{\widehat} \newcommand{\wb}{\overline} \newcommand{\bb}{\mathbb} \newcommand{\scr}{\mathscr} \newcommand{\RR}{\mathbb R} \newcommand{\ZZ}{\mathbb Z} \newcommand{\CC}{\mathbb C} \newcommand{\TT}{\mathbb T} \newcommand{\NN}{\mathbb N} \newcommand{\PP}{\mathbb P} \newcommand{\LL}{\mathbb L} \newcommand{\II}{\mathbb I} \newcommand{\CP}{\mathbb{CP}} \newcommand{\del}{\nabla} \newcommand{\pp}{\mathbf{m}} \newcommand{\into}{\hookrightarrow} \newcommand{\emprod}{m} \newcommand{\tensor}{\otimes} \renewcommand{\Re}{\text{Re}} \renewcommand{\Im}{\text{Im}} \newcommand{\eps}{\varepsilon} \newcommand{\CF}{CF^\bullet} \newcommand{\HF}{HF^\bullet} \newcommand{\SH}{SH^\bullet} \newcommand{\core}{\mathfrak{c}} \newcommand{\cocore}{\mathfrak{u}} \newcommand{\stp}{\mathfrak{f}} \newcommand{\li}{i} \newcommand{\ot}{\leftarrow} \newcommand{\Spinc}{\text{Spin}^c} \newcommand{\ev}{ev} \newcommand{\st}{\;:\;} \newcommand{\OP}{\mathcal O_{\mathbb P^1}} \newcommand{\OPP}{\mathcal O_{\mathbb P\times \mathbb P}} \newcommand{\gentime}{\text{\ClockLogo}} \newcommand{\q}{m} \newcommand{\HeF}{\widehat{CF}^\bullet} \newcommand{\HHeF}{\widehat{HF}^\bullet} \newcommand{\p}{\eta} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\cone}{cone} \DeclareMathOperator{\dg}{dg} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Conn}{Conn} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\Flux}{Flux} \DeclareMathOperator{\Crit}{Crit} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\Ext}{Ext} \DeclareMathOperator{\TropB}{TropB} \DeclareMathOperator{\weight}{wt} \DeclareMathOperator{\Span}{span} \DeclareMathOperator{\Coh}{Coh} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Fuk}{Fuk} \DeclareMathOperator{\str}{star} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Coh}{Coh} \DeclareMathOperator{\CritVal}{CritV} \DeclareMathOperator{\Sing}{Sing} \DeclareMathOperator{\FS}{FS} \DeclareMathOperator{\Vect}{Vect} \DeclareMathOperator{\grad}{grad} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\Bl}{Bl} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Tw}{Tw} \DeclareMathOperator{\Int}{Int} \DeclareMathOperator{\Arg}{\mathbf{M}}\begin{filecontents}{references.bib} @article{ballard2012hochschild, title={Hochschild dimensions of tilting objects}, author={Ballard, Matthew and Favero, David}, journal={International Mathematics Research Notices}, volume={2012}, number={11}, pages={2607--2645}, year={2012}, publisher={OUP} } @article{craw2007explicit, title={Explicit methods for derived categories of sheaves}, author={Craw, Alastair}, publisher={Citeseer} } @article{weinstein1971symplectic, title={Symplectic manifolds and their {L}agrangian submanifolds}, author={Weinstein, Alan}, journal={Advances in Mathematics}, volume={6}, number={3}, pages={329--346}, year={1971}, publisher={Academic Press} } @article{hanlon2022aspects, title={Aspects of functoriality in homological mirror symmetry for toric varieties}, author={Hanlon, A and Hicks, J}, journal={Advances in Mathematics}, volume={401}, pages={108317}, year={2022}, publisher={Elsevier} } @article{biran2013lagrangian, title={{L}agrangian cobordism. {I}}, author={Biran, Paul and Cornea, Octav}, journal={Journal of the American Mathematical Society}, volume={26}, number={2}, pages={295--340}, year={2013} } @article{tanaka2016fukaya, title={The Fukaya category pairs with Lagrangian cobordisms}, author={Tanaka, Hiro Lee}, journal={arXiv preprint arXiv:1607.04976}, year={2016} } @book{seidel2008fukaya, title={Fukaya categories and Picard-Lefschetz theory}, author={Seidel, Paul}, volume={10}, year={2008}, publisher={European Mathematical Society} } @article{seidel2003long, title={A long exact sequence for symplectic {F}loer cohomology}, author={Seidel, Paul}, journal={Topology}, volume={42}, pages={1003--1063}, year={2003} } @article{da2001lectures, title={Lectures on symplectic geometry}, author={da Silva, Ana Cannas}, journal={Lecture Notes in Mathematics}, volume={1764}, year={2001}, publisher={Springer} } @article{polterovich1991surgery, title={The surgery of {L}agrange submanifolds}, author={Polterovich, Leonid}, journal={Geometric \& Functional Analysis GAFA}, volume={1}, number={2}, pages={198--210}, year={1991}, publisher={Springer} } @misc{perutz2008handleslide, doi = {10.48550/ARXIV.0801.0564}, url = {https://arxiv.org/abs/0801.0564}, author = {Perutz, Timothy}, keywords = {Symplectic Geometry (math.SG), Geometric Topology (math.GT), FOS: Mathematics, FOS: Mathematics, 53D12; 53D40; 57M27; 32U40}, title = {Hamiltonian handleslides for {H}eegaard {F}loer homology}, publisher = {arXiv}, year = {2008}, copyright = {Assumed arXiv.org perpetual, non-exclusive license to distribute this article for submissions made before January 2004} } @incollection{audin1994symplectic, title={Symplectic rigidity: {L}agrangian submanifolds}, author={Audin, Mich{\`e}le and Lalonde, Fran{\c{c}}ois and Polterovich, Leonid}, booktitle={Holomorphic curves in symplectic geometry}, pages={271--321}, year={1994}, publisher={Springer} } @phdthesis{oancea2003suite, title={La suite spectrale de {L}eray-{S}erre en homologie de {F}loer des vari{\'e}t{\'e}s symplectiques compactes {\`a} bord de type contact}, author={Oancea, Alexandru}, year={2003}, school={Universit{\'e} Paris Sud-Paris XI} } @article{abouzaid2010geometric, title={A geometric criterion for generating the {F}ukaya category}, author={Abouzaid, Mohammed}, journal={Publications Math{\'e}matiques de l'IH{\'E}S}, volume={112}, pages={191--240}, year={2010} } @article{viterbo1999functors, title={Functors and computations in {F}loer homology with applications, I}, author={Viterbo, Claude}, journal={Geometric \& Functional Analysis GAFA}, volume={9}, number={5}, pages={985--1033}, year={1999}, publisher={Springer} } @misc{stacks-project, author = {The {Stacks project authors}}, title = {The Stacks project}, howpublished = {\url{https://stacks.math.columbia.edu}}, year = {2022}, } @article{wendlbeginner, title={A beginner’s overview of symplectic homology}, author={Wendl, Chris}, journal={Preprint. www. mathematik. hu-berlin. de/wendl/pub/SH. pdf} } @article{seidel2006biased, title={A biased view of symplectic cohomology}, author={Seidel, Paul}, journal={Current developments in mathematics}, volume={2006}, number={1}, pages={211--254}, year={2006}, publisher={International Press of Boston} } @article{arnol1980lagrange, title={{L}agrange and {L}egendre cobordisms. I}, author={Arnol'd, Vladimir Igorevich}, journal={Funktsional'nyi Analiz i ego Prilozheniya}, volume={14}, number={3}, pages={1--13}, year={1980}, publisher={Russian Academy of Sciences} } @article{fukaya2007lagrangian, title={{L}agrangian intersection {F}loer theory-anomaly and obstruction, chapter 10}, author={Fukaya, K and Oh, YG and Ohta, H and Ono, K}, journal={Preprint, can be found at http://www. math. kyoto-u. ac. jp/\~{} fukaya/Chapter10071117. pdf}, year={2007} } @article{biran2014lagrangian, title={Lagrangian cobordism and Fukaya categories}, author={Biran, Paul and Cornea, Octav}, journal={Geometric and functional analysis}, volume={24}, number={6}, pages={1731--1830}, year={2014}, publisher={Springer} } @article{bourgeois2009symplectic, title={Symplectic homology, autonomous {H}amiltonians, and {M}orse-{B}ott moduli spaces}, author={Bourgeois, Fr{\'e}d{\'e}ric and Oancea, Alexandru}, journal={Duke mathematical journal}, volume={146}, number={1}, pages={71--174}, year={2009}, publisher={Duke University Press} } @incollection{auroux2014beginner, title={A beginner’s introduction to {F}ukaya categories}, author={Auroux, Denis}, booktitle={Contact and symplectic topology}, pages={85--136}, year={2014}, publisher={Springer} } @article{singer1933three, title={Three-dimensional manifolds and their {H}eegaard diagrams}, author={Singer, James}, journal={Transactions of the American Mathematical Society}, volume={35}, number={1}, pages={88--111}, year={1933}, publisher={JSTOR} } @article{ozsvath2004holomorphic, title={Holomorphic disks and three-manifold invariants: properties and applications}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={Annals of Mathematics}, pages={1159--1245}, year={2004}, publisher={JSTOR} } @article{ozsvath2004introduction, title={An introduction to {H}eegaard {F}loer homology}, author={Ozsv{\'a}th, Peter and Szab{\'o}, Zolt{\'a}n}, journal={{F}loer homology, gauge theory, and low-dimensional topology}, volume={5}, pages={3--27}, year={2004} } @article{fet1952variational, title={Variational problems on closed manifolds}, author={Fet, Abram Il'ich}, journal={Matematicheskii Sbornik}, volume={72}, number={2}, pages={271--316}, year={1952}, publisher={Russian Academy of Sciences, Steklov Mathematical Institute of Russian~…} }\end{filecontents} \addbibresource{references.bib}\begin{document} \title{Tropical Geometry: plan of attack} \maketitle \thispagestyle{firstpage} \section{a short introduction to tropical geometry} \label{art:tropicalGeometryIntroduction} We first study the log map \[ \Log_t:= \log_t|-|: \CC\to \RR\cup\{-\infty\} \] where $t>1$. and try to define a ``ring structure'' on $\RR\cup\{-\infty\}$ which makes this log map a homomorphism. The first guess that one would take is to define \begin{align*} ``\times" \text{ given by the operation } q_1 ``\times" q_2 = &\Log_t(\Log_t^{-1}(q_1) \cdot \Log_t^{-1}(q_2)) =q_1+q_2 \\ ``+" \text{ given by the operation } q_1 ``+" q_2 = &\Log_t(\Log_t^{-1}(q_1) + \Log_t^{-1}(q_2)) \end{align*} While the first operation is well defined, the second is not! In order to make this well defined we take the limit of the second equation as $t\to \infty$, from which we obtain \[\lim_{t\to\infty} \Log_t(\Log_t^{-1}(q_1) + \Log_t^{-1}(q_2)) = \max(q_1, q_2).\] This gives us a definition for our new operations. \begin{definition} \label{def:tropicalSemiField} The \emph{semi-field of tropical numbers} is the set $\TT:= \RR\cup_\infty$ equipped with the operations (called tropical plus and tropical times): \begin{align*} q_1\oplus q_2 =& \max(q_1, q_2)\\ q_1\odot q_2 =& q_1+q_2 \end{align*} where $q_1, q_2\in \TT$.\end{definition} The goal is now to understand how algebraic geometry over $\CC$ relates to ``algebraic geometry'' over the semi-field $\TT$. The first thing to do it to exchange polynomials for tropical polynomials. For instance, given $f(z_1, z_2): \CC^2\to \CC$ a polynomial of two variables, we declare the tropicalization of the polynomial to be \[f(z_1, z_2)=\sum a_{ij} z_1^iz_2^j \leftrightarrow \TropB(f)(q_1, q_2):= \max (a_{ij}+iq_1 + jq_2 )\] \begin{example} \label{exm:tropicalization} If $f=q_1+q_2+1$, the tropicalization is given by $\TropB(f) = \max(1+q_1, 1+q_2, 1)$ \end{example} \section{the zero locus of a tropical polynomial} \label{art:tropicalZeroSet} The next question is to understand the zero set of a tropical function. When $f$ is a polynomial, we have the associated variety $V(f):= \{q\st f(q)=0\}$. Na\"ively, one might try define the tropical zero set to be the set where $\TropB(f)=-\infty$ (as $-\infty$ is the tropical additive identity). However, it is clear to see that this will have no solutions. \begin{example} \label{exm:tropicalamoeba} Take $f=q_1+q_2+1$, where $q_1,q_2 \in (\CC^*)^2$. Drawing the image of $V(f)$ under $\Log_t$ gives us the following sequence of images: \begin{figure} \end{figure} We call the image of $V(f)$ under the $\Log_t$ map the \emph{amoeba} of $V(f)$, which (in this example) appears to converge to some piecewise linear object. \end{example} This mimics the following behavior. A tropical polynomial $\phi: \RR^n\to \RR$ by definition, is a convex piecewise integral affine function on $\RR^2$. We can associate to every such function the locus where $\phi$ where $\phi$ is not differentiable. This will be a union of polyhedra of dimension $n-1$. \begin{definition} \label{def:tropicalzeroset} Let $\phi: \RR^n\to \RR$ be a tropical polynomial. The \emph{tropical zero set} is set \[V(f):=\{q\in \RR^n \text{ such that $f$ is not differentiable at $q$}\}.\] \end{definition} We now give some more details to the previous section. \begin{definition} \label{def:integralaffinefunction} Fix a lattice structure $\ZZ^n\subset \RR^n$ and $\ZZ\subset \RR$. We say that a function $\underline \phi: \RR^n\to \RR$ is \emph{integral affine} if $\underline \phi= \phi_{l}+c$ where $\phi_{l}$ is $\ZZ$-linear and $c\in \RR$ is some constant. \end{definition} \begin{definition} \label{def:affinehalfspace} For $\underline \phi: \RR^n\to \RR$ a integral affine structure, define $H_{\underline \phi}:= \{q\in \RR^n \st \underline\phi(q) \geq 0 \}.$ \end{definition} \begin{definition} \label{def:rationalpolyhedron} We say that $\sigma\subset \RR^n$ is a \emph{rational polyhedron} if $\sigma = \bigcap_{i\in I} H_{\underline \phi_i}$ for some collection of integral affine functions. \begin{itemize} \item We say that it is a cone if a translate of it is closed under multiplication by $\RR_{\geq 0}$ \item We say that $\sigma$ is a polytope if it is compact. \end{itemize} \end{definition} \begin{definition} \label{def:polyhedralcomplex} A set of polyhedra is called a \emph{polyhedral complex} if \begin{itemize} \item if $\sigma\in P$, then every face $\tau< \sigma$ is also contained in $P$, \item For $\sigma_1, \sigma_2\in P$: if $\sigma_1\cap\sigma_2= \tau \neq \emptyset$,then $\tau$ is a face of both $\sigma$ and $\sigma'$. \end{itemize} \end{definition} \begin{figure} \label{fig:somePolyhedralComplexes} \centering \begin{tikzpicture}\begin{scope}[] \draw (-1,1.5) -- (-2,0) -- (-0.5,-0.5); \draw[fill=gray!20] (-4,-1.5) rectangle (-2,0); \end{scope}\begin{scope}[shift={(5.5,1)}] \draw[fill=gray!20] (-4,-1.5) rectangle (-2,0); \draw (-3,-1.5) -- (-2.5,-2.5); \end{scope} \node[fill=black, circle, scale=.2] at (-4,-1.5) {}; \node[fill=black, circle, scale=.2] at (-4,0) {}; \node[fill=black, circle, scale=.2] at (-2,0) {}; \node[fill=black, circle, scale=.2] at (-2,-1.5) {}; \node[fill=black, circle, scale=.2] at (-0.5,-0.5) {}; \node[fill=black, circle, scale=.2] at (-1,1.5) {}; \node[fill=black, circle, scale=.2] at (1.5,-0.5) {}; \node[fill=black, circle, scale=.2] at (2.5,-0.5) {}; \node[fill=black, circle, scale=.2] at (1.5,1) {}; \node[fill=black, circle, scale=.2] at (3.5,1) {}; \node[fill=black, circle, scale=.2] at (3.5,-0.5) {}; \node[fill=black, circle, scale=.2] at (3,-1.5) {}; \end{tikzpicture} \caption{Two examples of unions of polyhedra. On the left, a polyhedral complex. The right figure is not an example of a polyhedral complex} \end{figure}\begin{lemma} \label{lem:polyhedralsubdivision} Every set of polyhedra has a polyhedral complex subdivision. \end{lemma} Later, we will impose some additional criteria on these complexes: \begin{itemize} \item Pure dimension $k$ --- every maximal cell is of dimension $k$, \item ``Weighted'': there exists a weight function $\weight: \{\text{Maximal Cells}\} \to \ZZ$ \item ``Balanced'': for a weighted pure complex: every codimension 1 face $\tau$ is we have $\sum_{\sigma} \weight(\sigma) v_{\sigma/\tau}=0$ in $\RR^n /\Span(\tau)$. \end{itemize} \begin{definition} \label{def:tropicalkcycle} A \emph{tropical $k$-cycle} in $\RR^n$ is a balanced weighted polyhedral complex. \end{definition} \section{a sketch of intersection theory} \label{art:tropicalGeometryIntersectionIntroduction} Given $Z_k(\RR^n)$, the set of tropical $k$-cycles, has a group structure, whose additive structure is given by taking unions and subdividing. This also comes with a ring structure \begin{align*} Z_k(\RR^n)\otimes Z_l(\RR^n)\to \ZZ_{n+l-n}(\RR^n)\\ X\tensor Y \mapsto \lim_{\epsilon\to 0} (X\cap (T+\eps v)) \end{align*} where is chose so that the intersection is transverse for all $\epsilon>0$ sufficiently small. \begin{figure} \label{fig:intersectionoftropicalcurves} \centering \begin{tikzpicture}\begin{scope}[shift={(0,0)}] \fill[gray!20] (1.5,2) rectangle (-2.5,-2.5); \clip (1.5,2) rectangle (-2.5,-2.5); \draw[blue] (-2.65,0.5) -- (0,0.5) -- (0,-2.5) (1.5,2) -- (0,0.5); \draw[red] (-3,-0.5) -- (0.15,-0.5) -- (0.15,-3) (1.65,1) -- (0.15,-0.5); \node[circle, fill=black, scale=.2] at (0,-0.5) {}; \end{scope} \begin{scope}[shift={(-9,1)}] \fill[gray!20] (2.5,1) rectangle (-1.5,-3.5); \clip (2.5,1) rectangle (-1.5,-3.5); \draw[red] (-2,-1.5) -- (1,-1.5) -- (1,-3.5) (2.5,0) -- (1,-1.5); \draw[blue] (-2.5,-0.5) -- (1,-0.5) -- (1.0001,-4) (2.5,1) -- (1,-0.5); \end{scope} \end{tikzpicture} \caption{We compute the intersection between the two tropical curves drawn on the left hand side by first taking a slight perturbation so that they intersect transversely. The set obtain in the limit as the perturbations go to zero is independent of the choice of transverse perturbation. In this setting, the intersection of two tropical lines is a point.} \end{figure} The key step to proving that this ring structure is well defined is the moving lemma. \begin{lemma} \label{lem:movinglemma} The content of the moving lemma goes here \end{lemma} From this information, it is natural to define a tropical version of the Chow group. This means that we need a substitute for rational/algebraic/numerical equivalence. \begin{definition} \label{def:TropicalRationalfunction} A function $\psi: \RR^n\to \RR$ is a \emph{tropical rational function} is a piecewise integral affine function. \end{definition} \begin{example} \label{exm:tropicalrationalfunction} The function $\psi(q_1, q_2):= \text{min}(1+q_1, 1+q_2, 1)$ is an example of a rational function. Observe that this is not a convex function, and therefore is \emph{not} a tropical polynomial \end{example} To a rational function $f$, we associate a tropical $(n-1)$ cycle in $\RR^n$. First, pick a minimal polyhedral subdivision $P$ of $\RR^n$ so that $\psi_\sigma$ is integral affine for every $\sigma\in P$. This is not uniquely determined. Then take the $(n-1)$ skeleton for this polyhedral structure; then assign weights. \begin{definition} \label{def:tropicalhodgeboundaries} \begin{align*} R_k:= &\{\div(\psi)_S\cdot c : \psi\in PA(\RR^n), c\in Z_{k+1}(\RR^n)\}\\ R_k^b:=&\{\div(\psi)_S\cdot c : \psi\in PA(\RR^n), \text{bounded} , c\in Z_{k+1}(\RR^n)\} \end{align*} \end{definition} We then can define : \begin{align*} CH_k(\RR^n):=Z_k/R_k \\ CH_k^b(\RR^n):= Z_k/R^b_k \end{align*}\section{a sketch of compactification in tropical geometry} \label{art:tropicalCompactificationSketch} Note that we have some ideas of compactification already: after all we can define tropical polynomials on $\RR^n$, and $\TT^n$ is a compactification of $\RR^n$. The space $\TT^n$ has a decomposition into pieces $\RR_I$, which we call the torus orbits. The key notion that we will need to study is how many ``-'infinity'''s does a point $x$ belong to. \begin{definition} \label{def:sedentarity} Given $x\in \TT^n$, we define the \emph{sedentarity} of $x$ to be the number of $-\infty$'s belonging to $q$ in its coordinate description. \end{definition} We say that $\sigma\in \TT^n$ is a polyhedron if it is the closure of a polyhedron in one of the torus orbits of $\TT^n$. From these compact pieces, we can define a tropical variety: a locally open subset of polyhedra satisfying a balancing condition. \section{the tropical Hodge conjecture} \label{art:tropicalHodgeSketch} Associated to $X$ a tropical variety, we want to some geometry. We have a short exact sequence \[ 0 \to \RR_X\to PA_X\to \Omega_X\to 0\] where $\Omega_X$ gives the tropical cotangent sheaf, whose sections are called tropical 1-forms. Another characterization is: given a fan $\Sigma\subset \RR^n$, want to define $F_k(\Sigma)\subset \bigwedge^k\ZZ^n$ the set of polyvectors generated by $v_1\wedge \cdots \wedge v_k$, where $v_1, \ldots, v_k$ belong to a single cone of $\Sigma$. This associates to $X$ a tropical variety $F_k$ a constructible sheaf on $X$ so that $F_{k, x}=F_k(\Sigma(x))$, where $\Sigma(x)$ is the tangent cone at $x$. This defines for us a chain complex \[C_\bullet(X, F_k)\] which comes with a tropical $(p, q)$ homology which is the homology $H_q(X, F_p)$. When $X$ can be geometrically realized, this compute some limit of a mixed Hodge structure, and satisfies the K\"ahler/Hodge package. Finally, there exists a cycle class map \begin{align*} CH_k(\RR^n)\to H_{p}(\RR^n, F_p)&& Z\mapsto \Sigma_\subset K_{cell} \weight(\Delta)\cdot v_\Delta \otimes \Delta \end{align*} where $\Delta$ is the volume of the $k$-cell. The tropical Hodge conjecture is that this is an isomorphism. \printbibliography \end{document}