\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

example 0.0.1

Once again we consider the Lefschetz fibration \(\pi: \CC^2\to \CC\) from Missing Label (exm:LocalModelOfASingularity)!. The only critical value of this function is \(0\). Given a path \(\gamma:[0, 1]\to \CC\) with \(\gamma(0)=0\), the thimble can be described by the construction of Missing Label (exm:LagrangiansGivenBySymplecticParallelTransport)!, \[D^n_\gamma=L_{\gamma, 0}.\] In particular case of \(\gamma\) being the real positive \(\RR_{\geq0}\subset \CC\), \begin{align*} L_{\gamma, 0}=&\{(z_1, z_2)\;|\;z_1z_2\in \RR_{\geq 0}, |z_1|^2-|z_2|^2=0\}\\ =&\{(z, \bar z)\;|\; z\in \CC\}. \end{align*}