\(
\def\CC{{\mathbb C}}
\def\RR{{\mathbb R}}
\def\NN{{\mathbb N}}
\def\ZZ{{\mathbb Z}}
\def\TT{{\mathbb T}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\HF{{\operatorname{HF}^\bullet}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\ot{{\leftarrow}}
\def\st{\;:\;}
\def\Fuk{{\operatorname{Fuk}}}
\def\emprod{m}
\def\cone{\operatorname{Cone}}
\def\Flux{\operatorname{Flux}}
\def\li{i}
\def\ev{\operatorname{ev}}
\def\id{\operatorname{id}}
\def\grad{\operatorname{grad}}
\def\ind{\operatorname{ind}}
\def\weight{\operatorname{wt}}
\def\Sym{\operatorname{Sym}}
\def\HeF{\widehat{CHF}^\bullet}
\def\HHeF{\widehat{HHF}^\bullet}
\def\Spinc{\operatorname{Spin}^c}
\def\min{\operatorname{min}}
\def\div{\operatorname{div}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\Tw{{\operatorname{Tw}}}
\def\Log{{\operatorname{Log}}}
\def\TropB{{\operatorname{TropB}}}
\def\wt{{\operatorname{wt}}}
\def\Span{{\operatorname{span}}}
\def\Crit{\operatorname{Crit}}
\def\CritVal{\operatorname{CritVal}}
\def\FS{\operatorname{FS}}
\def\Sing{\operatorname{Sing}}
\def\Coh{\operatorname{Coh}}
\def\Vect{\operatorname{Vect}}
\def\into{\hookrightarrow}
\def\tensor{\otimes}
\def\CP{\mathbb{CP}}
\def\eps{\varepsilon}
\)
SympSnip:
example 0.0.1
Once again we consider the Lefschetz fibration \(\pi: \CC^2\to \CC\) from Missing Label (exm:LocalModelOfASingularity)!.
The only critical value of this function is \(0\).
Given a path \(\gamma:[0, 1]\to \CC\) with \(\gamma(0)=0\), the thimble can be described by the construction of Missing Label (exm:LagrangiansGivenBySymplecticParallelTransport)!,
\[D^n_\gamma=L_{\gamma, 0}.\]
In particular case of \(\gamma\) being the real positive \(\RR_{\geq0}\subset \CC\),
\begin{align*}
L_{\gamma, 0}=&\{(z_1, z_2)\;|\;z_1z_2\in \RR_{\geq 0}, |z_1|^2-|z_2|^2=0\}\\
=&\{(z, \bar z)\;|\; z\in \CC\}.
\end{align*}