\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

example 0.0.1

A key set of examples of contact manifolds come as hypersurfaces of symplectic manifolds. Let \((X, \omega)\) be a symplectic manifold. Suppose that there is an expanding vector field \(Z\) on \(X\), that is, a vector field so that \[\mathcal L_Z \omega = \omega.\] The symplectic manifold \(X\) is exact, with primitive given by \(\lambda=\iota_Z \omega\). Let \(i:M\into X\) be a hypersurface which is transverse to \(Z\). Then the restriction \(\alpha:=\lambda|_M\) is an example of a contact form. We see that the form \begin{align*} \alpha \wedge d\alpha^{n-1} =& i^* (\iota_Z \omega \wedge \omega^{n-1})\\ \end{align*} is nonvanishing, as \(\omega^n\) is a volume form and \(Z\) is transverse to \(M\). The simplest example to consider come from \(\CC^n= \RR^{2n}\), where the radial vector field \(Z=\frac{1}{2}\sum_i \left(x_i \partial_{x_i} + y_i\partial_{y_i}\right)\) provides an example of an expanding vector field. The associated primitive for the symplectic form is \[\iota_Z \omega =\sum_{i=1}^n x_i dy_i-y_idx_i \] This radial vector field plays especially nicely with respect to the moment map, \begin{align*} p: \RR^{2n}\to& (\RR_{\geq 0})^n\\ (x_i, y_i)\mapsto&\frac{1}{2} (x_i^2+y_i^2) \end{align*} We give the base of the moment polytope \((\RR_{\geq 0})^n\) coordinates \((p_1, \ldots, p_n\)). At every point \((x_i, y_i)\in \RR^{2n}\), we can project the Liouville vector field to \[p_*Z_{(x_i, y_i)}= \sum_{i=1}^n (x_i^2+y_i^2) \partial_{p_i} =\frac{1}{2}\sum_{i=1}^n p_i \partial_{p_i}.\] In particular, if we have a hypersurface \(N\subset (\RR_{\geq 0})^n\) which is transverse to the radial vector field \(\sum_{i=1}^n p_i \partial_{p_i}\) and whose preimage \(M:=p^{-1}(N)\subset \RR^{2n}\) is a smooth hypersurface, then \(M\) is a contact manifold.
figure 0.0.2:The Liouville structure on \(\CC^2\) as viewed from the moment map