\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

example 0.0.1

Consider the symplectic manifold \(X=T^*L\). Consider a closed one form \(\eta \in \Omega^1(L, \RR)\). Use this to create a Lagrangian isotopy \begin{align*} \li_t: L\times [0, 1]\to& T^*L && (q,t) \mapsto& t\cdot \eta_p \end{align*} between the zero section and the graph of \(\eta\). To each loop \(\gamma\in L\), look at the cylinder \(\li_t\circ \gamma:S^1\times I\to X\). This can be explicitly parameterized by \begin{align*} c: S^1\times I \to& T^*L&& (\theta, t) \mapsto& (\gamma(\theta), t\cdot \eta_{\gamma(\theta)}). \end{align*} The cotangent bundle has an exact symplectic form, \(\omega=d\lambda\), so computing the flux can be simplified by using Stoke's theorem: \begin{align*} \Flux_{\li_t}(\gamma)=&\int_{c}\omega=\int_{c}d\lambda \\ =&\int_{S^1\times \{1\}}c^*\lambda - \int_{S^1\times\{0\}}c^*\lambda \\ =&\int_{S^1}\gamma^*\eta=\eta(\gamma) \end{align*} So \([\Flux_{\li_t}]=[\eta]\in \Omega(L)\).