Consider the 3-sphere
\[M=S^3=\left\{(x_0, x_1, x_2, x_3)\st x_i\in \RR, \sum_{i=1}^3 x_i^2=1.\right\}\]
Consider the decomposition of this into two halves along the \(z_0\) coordinate:
\begin{align*}
U_1=\{(x_0, x_1, x_2, x_3)\in S^3 \st x_0\leq 0\}&& U_2=\{(x_0, x_1, x_2, x_3)\in S^3 \st x_0\geq 0\}
\end{align*}
Then both \(U_1, U_2\) are diffeomorphic to the 3-ball, and are glued together by their common boundary \(S^2=\Sigma_0\). See figure 0.0.2.
figure 0.0.2:After identifying \(S^3\setminus \{(1, 0, 0, 0)\}\) with \(\RR^3\) via stereographic projection, the Heegaard splitting of \(S^3\) is given by taking the unit sphere, which decomposes the sphere into two \(3\)-balls. We also draw the meridinal line \((\cos(\theta), \sin(\theta), 0, 0)\).