\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

example 0.0.1

Let \(V\subset Q\) be a smooth submanifold. The conormal bundle \(N*V\subset T^*Q\) consists of all covectors \((q, p)\in T^*Q\) with \(q\in V\) and \(p(v)=0\) for all \(v\in TV\). This is always an \(n\)-dimensional submanifold of \(T^*Q\). We can choose local coordinates \(q_1, \ldots, q_n, p_1, \ldots p_k\) so that \(V=\{(0, \ldots, 0, q_{k+1}, \ldots, q_n)\;|\; q_i\in \RR\}\). In these local coordinates, \(N^*V=\{(0, \ldots, q_{k+1}, \ldots, q_n, p_1, \ldots, p_k, 0, \ldots, 0)\}\); which is a Lagrangian linear subspace for the symplectic form \(\sum_{i=1}^n dq_i \wedge dp_i\). The intersection of the zero section and a conormal bundle is \(Q\cap N^*V=V.\)