\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

example 0.0.1

The product torus is the Lagrangian torus in \(\CC^n\) given by \[T^n=\{|z|\in \CC^n\;\text{ such that }\; |z_i|=1\}.\] To prove that this is a Lagrangian submanifold we first observe that whenever \(L_1\subset (X_1, \omega_1)\) and \(L_2\subset (X_2, \omega_2)\) are Lagrangian submanifolds, then \(L_1\times L_2\subset (X_1\times X_2, \omega_1+\omega_2)\) is a Lagrangian submanifold as well. The product torus comes from taking the product of circles \(S^1\subset \CC\), which are Lagrangian submanifolds from (Lagrangians in $\dim(X)=1$).