\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

example 0.0.1

The name module comes from the simplest example. Let \(R\) be a ring. Now consider the \(A_\infty\) category \(\mathcal A\) which only contains one object \(A\), and \(\hom(A, A)=R\). Let \(M\) be an \(R\)-module. We obtain a \(\text{mod}-\mathcal A\) with the assignment \(M(A)=M\), and whose product \(m^{1|k}:M(A)\tensor A^{\tensor k}\to M(A)\) is \[ m^{1|1}(x,r)=x\cdot r \] and vanishes if \(k\neq 1\). The \(A_\infty\) module relations state \[m^{1|1}(m^{1|1}(x, r_1),r_2)-m^{1|1}(x, m^2(r_1, r_2))=(x\cdot r_1)\cdot r_2 - x\cdot (r_1\cdot r_2)=0\] which is guaranteed by associativity of the product. Given any chain complex of \(R\)-modules \(M^\bullet\), we similarly obtain a right \(\mathcal A\) module by taking \(M^\bullet(A)=M^A\); the \(A_\infty\) module relations now state that \(m^{1|0}\circ m^{1|0}= d_M\circ d_M=0\), and that \(d_M\) is a morphism of \(R\)-modules. There are right \(\mathcal A\)-modules beyond chain complexes. However, given any right \(\mathcal A\)-module, the homology of the complex \(H^\bullet(M(A))\) is a graded \(R\)-module.