exercise 0.0.1
Consider the space \(T^*S^n\) which we describe as a symplectic submanifold of \(\CC^{n+1}\) by the equation \[\{(x_0, \ldots, x_n,y_0, \ldots, y_n) \st \sum_{i} (x_i+\sqrt{-1} y_i)^2=1 \}\]- Consider the Hamiltonian given by \(H=1/2|\vec y|^2\). Write down the Hamiltonian vector field on \(T^*S^n\).
- Consider now the symplectic manifold with boundary \[B^*_1S^n=\{(x_0, \ldots, x_n,y_0, \ldots, y_n) \in T^*S^n, |\vec y|\leq 1\}.\] Show that there exists \(t_0\) so that \(\phi^{t}: B^*_1S^n\to B^*_1 S^n\), the time-\(t_0\) Hamiltonian flow of \(H\), acts by \(-1\) on the boundary of \(B^*_1S^n\).
- The symplectic Dehn twist is the map: \begin{align*} \tau^n: B^*_1 S^n\to& B^*_1 S^n\\ (\vec x, \vec p) \mapsto& -\phi^{t_0}(\vec x, \vec p). \end{align*} which fixes the boundary of \(B^*_1 S^n\). Consider the Lagrangian submanifold \[F_q:=\{(1, \ldots, 0), (0, p_1, \ldots, p_n)\}\subset B^*_1S^n.\] Show that there is a Hamiltonian isotopy which identifies \[\tau_n(F_q)\sim S^n\# F_q.\]
- Consider in \(T^2\) the Lagrangian submanifold \(L:=L_{(1, 0),0}\) as before. Identify a small neighborhood \(U\) of \(L\) with \(B^*_1(S^1)\), and define \(\tau_L: T^2\to T^2\) by \[\tau_L(x)=\left\{\begin{array}{cc} \tau^1(x) &\text{if \(x\in U\)}\\ x &\text{otherwise}\end{array}\right.\] For \(a, b\in \ZZ\), and \(\theta\in S^1\), find the Lagrangian submanifold \(L_{(a', b'), \theta'}\) which is Hamiltonian isotopic to \(\tau_L(L_{(a, b), \theta})\).
Click here to view solution.