exercise 0.0.1
Consider the torus \(T^2=S^1\times S^1\), where we parameterize the circle \(S^1\) as \(\RR/\ZZ\). For coprime integers \(a, b\in \ZZ\), and \(\theta\in S^1\), we write \[L_{(a, b),\theta}=\{(a\cdot t+\theta,b\cdot t), t\in S^1\}.\] for the Lagrangian \(S^1\) of slope \((a, b)\) passing through the point \((\theta, 0)\).- Compute \(\HF(L_{(a, b), \theta_1}, L_{(c, d), \theta_2})\).
- Write \(L_0:=L_{(1,0), 0}, L_1:= L_{(0,1), 0}\). Let \(L_2 = L_0\# L_1\). Find values \((a, b), \theta\) so that \(L_2\) is Hamiltonian isotopic to \(L_{(a, b), \theta}\).
- Let \(\{x_{01}\}=L_0\cap L_1\), \(\{x_{12}\}=L_1\cap L_2\), and \(\{x_{20}\}=L_2\cap L_0\). Prove that \begin{align*} m^2(x_{12}, x_{01})=0 && m^2(x_{20}, x_{12})=0 && m^2x_{01}, (x_{20})=0 \end{align*} so that we have what appears to be an exact sequence \[L_0\xrightarrow{x_{01}} L_1 \xrightarrow{x_{12}} L_2 \xrightarrow{x_{20}} L_0[1].\]
- What happens in the previous computation if we replace \(L_2\) with \(L_2'\) which is Lagrangian (but not Hamiltonian) isotopic to \(L_2\)?
Click here to view solution.