\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

example 0.0.1

Let \(\CC^*\) be equipped with the symplectic form \(\omega=\frac{1}{2\pi} d(\log r) \wedge d\theta\). Let \(L_r\) be the Lagrangian \[L_r:=\{z \text{ such that } \log|z|=r\}.\] Let \(\li_r:L\times [r_0, r_1]\to X\) be the isotopy between \(L_{r_0}\) and \(L_{r_1}\). Let \(e\in H_1(L_r)\) be the fundamental class of \(L\). The amount of flux swept out between these two Lagrangian submanifolds is given by the difference of their \(r\)-values. \[\Flux_{i_r}(e)=\int_{S^1} \int_{r_0}^{r^1} \frac{1}{2\pi} d(\log |z|)\wedge d\theta = r_1-r_0.\] For this reason, the value \(r\) is sometimes called the ``flux coordinate'' of the fibration \(\CC^*\to \RR\). The flux class therefore provides a nice parameterization of the space of Lagrangian submanifolds in this example.