\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

Let \(\li_t:L\times \RR\to X\) be a parameterization of the submanifold \(K\). By reparameterization, it suffices to check that this is a Lagrangian submanifold at points \((p, 0)\). The tangent space \(T_{(p, 0)}(L\times \RR)\) is spanned by vectors \(\{\partial_{x_1}, \ldots, \partial_{x_{n-1}}, \partial_t\}\). Because \(L\) is a Lagrangian of the fiber, and the fiber is a symplectic submanifold, \[\li_t^*\omega(\partial_{x_i}, \partial_{x_j})=0.\] Since \(K\) was constructed via parallel transport, \((\li_t)_*\partial_t\in (\ker(\pi_*))^{\omega\bot}\). Since \(L\) is a Lagrangian of the fiber, \((\li_t)_*\partial_{x_i}\in \ker(\pi_*)\). Therefore, \begin{align*}\li_t^*\omega(\partial_{x_i}, \partial_{t})=0 \end{align*}