\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

Suppose that \(P_1\sim^\RR P_2\). Then there exists \(F\subset Q\times \RR\) with \(F_{q_i}=P_i\). Take \(R=F\), and define \(\phi:=\pi^*\psi\). We see that \((\pi_Q)_* (\pi^*(\psi^*\psi)\cdot F)=P_1-P_2\). NOw suppose instead that \(P_1\sim^b P_2\). Then there exists \(R\) and \(\phi\in \mathcal K_R\) such that \(f_*(\div(\phi))=P_1-P_2\). Tke \(F:=(f\times \id)_* (\text{graph}(\phi))\). Cruicially, the function \(\phi\) is bounded so that the intersection with a sufficiently large slice is empty \[\begin{tikzpicture} \draw (-1.5,0) -- (1.5,0); \draw (-1.5,0.5) -- (-0.5,0.5) -- (0.5,2) -- (1.5,2); \node at (2.5,0) {\(R\)}; \draw (-0.5,0.5) -- (-0.5,-0.5) (0.5,2) -- (0.5,-0.5); \draw[dashed] (-1.5,-0.5) -- (1.5,-0.5); \draw[dashed] (-1.5,3) -- (1.5,3); \end{tikzpicture} \]