\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

It suffices to prove this for maps with domain \(D\subset \CC^n\), and \(f: D\to \CC\). Write \(f=u+\jmath v\). In a small neighborhood of the point \(z\), we can write \(f=\exp(h)\). Observe that \[ \Delta \ln|f|=&\Delta \ln|\exp(h)|=u\\ =& \sum_{i=1}^n \partial_{x_i}^2 u+ \partial_{y_i}^2 u\\ =& \sum_{i=1}^n \partial_{x_i}\partial_{y_i}v - \partial_{y_i}\partial_{x_i} v =0 \] Therefore \(\ln|f|\) is a harmonic function. We now prove the weak maximum principle for harmonic functions. Let \(h: U\subset \RR^n\to \RR\) be a harmonic function. For \(s\in \RR_{>0}\) we construct the function \(h+s\cdot e^{x_1}\). This now satisfies the property that \(\Delta(h+e^{x_1})>0\) everywhere, and not all of the