\(
\def\CC{{\mathbb C}}
\def\RR{{\mathbb R}}
\def\NN{{\mathbb N}}
\def\ZZ{{\mathbb Z}}
\def\TT{{\mathbb T}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\HF{{\operatorname{HF}^\bullet}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\ot{{\leftarrow}}
\def\st{\;:\;}
\def\Fuk{{\operatorname{Fuk}}}
\def\emprod{m}
\def\cone{\operatorname{Cone}}
\def\Flux{\operatorname{Flux}}
\def\li{i}
\def\ev{\operatorname{ev}}
\def\id{\operatorname{id}}
\def\grad{\operatorname{grad}}
\def\ind{\operatorname{ind}}
\def\weight{\operatorname{wt}}
\def\Sym{\operatorname{Sym}}
\def\HeF{\widehat{CHF}^\bullet}
\def\HHeF{\widehat{HHF}^\bullet}
\def\Spinc{\operatorname{Spin}^c}
\def\min{\operatorname{min}}
\def\div{\operatorname{div}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\Tw{{\operatorname{Tw}}}
\def\Log{{\operatorname{Log}}}
\def\TropB{{\operatorname{TropB}}}
\def\wt{{\operatorname{wt}}}
\def\Span{{\operatorname{span}}}
\def\Crit{\operatorname{Crit}}
\def\CritVal{\operatorname{CritVal}}
\def\FS{\operatorname{FS}}
\def\Sing{\operatorname{Sing}}
\def\Coh{\operatorname{Coh}}
\def\Vect{\operatorname{Vect}}
\def\into{\hookrightarrow}
\def\tensor{\otimes}
\def\CP{\mathbb{CP}}
\def\eps{\varepsilon}
\)
SympSnip:
Observe that the level sets of a linear Hamiltonian are \(\{r\}\times M\). The Hamiltonian vector field therefore can be restricted to a vector field on the contact manifold \(M\). It is not a surprise that the \(m V_\alpha\) and Hamiltonian vector field \(H_V\) agree:
\begin{align*}
\iota_{i_* m V_\alpha}\omega=& d(\exp(r) \alpha )(m V_\alpha)\\
=&(\exp(r) dr \wedge d\alpha - \exp(r) d\alpha) (m V_\alpha)\\
=&- m \cdot \exp(r)dr = dH^m
\end{align*}
Therefore, the time one Hamiltonian orbits of \(H^m\) correspond to the time \(m\) Reeb orbits of \(V_\alpha\); by studying Hamiltonian Floer theory on the symplectization \(\RR\times M\) we obtain some understanding of the Reeb dynamics of \((M, \alpha)\).
A useful observation is the following: suppose that \(m\) is not a period of some Reeb orbit. Then \(\RR\times M\) has no time one orbits for the linear Hamiltonian of slope \(m\).