\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

Here, \(\CF(S, L)\otimes S\) is a twisted complex. Recall that (as a vector space) \(\CF(S, L)=\bigoplus_{x\in S\cap L} \Lambda\langle x \rangle\). The twisted complex \(\CF(S, L)\otimes S\) is given by \(\bigoplus_{x\in S\cap L} S\langle x \rangle\), which is to say that formal direct sum of copies of \(S\) whose grading is determined by the intersection points \(x\). The differential on a twisted complex is a collection of maps \(\delta_{xy}^E\in \CF(S\langle x \rangle, S\langle y \rangle)\). The morphism we take is \[\delta_{xy}^E= \langle m^1(x), y\rangle \id.\] We now describe the map \(\ev: \CF(S, L)\otimes S\to L\). Recall that a morphism of twisted complexes is a collection of maps. We must pick for each \(S\langle x \rangle\) a morphism in \(\hom(S\langle x \rangle , L)\). Fortunately, there is a canonical choice (which is \(x\) itself).