\(
\def\CC{{\mathbb C}}
\def\RR{{\mathbb R}}
\def\NN{{\mathbb N}}
\def\ZZ{{\mathbb Z}}
\def\TT{{\mathbb T}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\HF{{\operatorname{HF}^\bullet}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\ot{{\leftarrow}}
\def\st{\;:\;}
\def\Fuk{{\operatorname{Fuk}}}
\def\emprod{m}
\def\cone{\operatorname{Cone}}
\def\Flux{\operatorname{Flux}}
\def\li{i}
\def\ev{\operatorname{ev}}
\def\id{\operatorname{id}}
\def\grad{\operatorname{grad}}
\def\ind{\operatorname{ind}}
\def\weight{\operatorname{wt}}
\def\Sym{\operatorname{Sym}}
\def\HeF{\widehat{CHF}^\bullet}
\def\HHeF{\widehat{HHF}^\bullet}
\def\Spinc{\operatorname{Spin}^c}
\def\min{\operatorname{min}}
\def\div{\operatorname{div}}
\def\SH{{\operatorname{SH}^\bullet}}
\def\CF{{\operatorname{CF}^\bullet}}
\def\Tw{{\operatorname{Tw}}}
\def\Log{{\operatorname{Log}}}
\def\TropB{{\operatorname{TropB}}}
\def\wt{{\operatorname{wt}}}
\def\Span{{\operatorname{span}}}
\def\Crit{\operatorname{Crit}}
\def\CritVal{\operatorname{CritVal}}
\def\FS{\operatorname{FS}}
\def\Sing{\operatorname{Sing}}
\def\Coh{\operatorname{Coh}}
\def\Vect{\operatorname{Vect}}
\def\into{\hookrightarrow}
\def\tensor{\otimes}
\def\CP{\mathbb{CP}}
\def\eps{\varepsilon}
\)
SympSnip:
Here, \(\CF(S, L)\otimes S\) is a twisted complex. Recall that (as a vector space) \(\CF(S, L)=\bigoplus_{x\in S\cap L} \Lambda\langle x \rangle\).
The twisted complex \(\CF(S, L)\otimes S\) is given by \(\bigoplus_{x\in S\cap L} S\langle x \rangle\), which is to say that formal direct sum of copies of \(S\) whose grading is determined by the intersection points \(x\).
The differential on a twisted complex is a collection of maps \(\delta_{xy}^E\in \CF(S\langle x \rangle, S\langle y \rangle)\). The morphism we take is
\[\delta_{xy}^E= \langle m^1(x), y\rangle \id.\]
We now describe the map \(\ev: \CF(S, L)\otimes S\to L\). Recall that a morphism of twisted complexes is a collection of maps. We must pick for each \(S\langle x \rangle\) a morphism in \(\hom(S\langle x \rangle , L)\). Fortunately, there is a canonical choice (which is \(x\) itself).