\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

There is a relation between exact triangles in \(A_\infty\) categories and the \(m^3\) product operation. Given \(A\xrightarrow{f}B \xrightarrow{g}C\xrightarrow{h}A[1]\) an exact triangle, where \(f, g, h\) are chain maps, with the additional assumption that \begin{align*} \emprod^2(g, f)=0&& \emprod^2(f, h)=0 && \emprod^2(h, g)=0. \end{align*} Then we have maps between \(C\) and the twisted cone by \begin{align*} C\xrightarrow{h} \cone(f:A\to B)&& \cone(f:A\to B) \xrightarrow{g} C. \end{align*} Now, \(\emprod^2_{Tw}(h, g)=\emprod^3(g,f,h)_{\mathcal A}\), which is the identity in the homology category.