theorem 0.0.1 [BC14]
See also [Tan16]. Let \(L_0, \ldots L_k\in \Fuk(X)\) be Lagrangian submanifolds, and suppose there exists a monotone Lagrangian cobordism \(K: (L_0, \ldots, L_k)\rightsquigarrow \emptyset\). Then there exists an iterated cone decomposition in \(\text{mod}-\Fuk(X)\), where each triangle in the diagram an exact triangle, \(C_0=0\), and \(C_k=k\).References
[BC14] | Paul Biran and Octav Cornea. Lagrangian cobordism and fukaya categories. Geometric and functional analysis, 24(6):1731--1830, 2014. |
[Tan16] | Hiro Lee Tanaka. The fukaya category pairs with lagrangian cobordisms. arXiv preprint arXiv:1607.04976, 2016. |