example 0.0.1
Let \(Q\) be a manifold. The cotangent bundle \(X=T^*Q\) is an exact symplectic manifold; call the primitive \(\lambda_{can}=\sum_{i=1}^np_idq_i\). In local coordinates, the Liouville vector field is \(Z= \sum_{i=1}^n p_i \partial p_i\). The flow of this vector field acts by scalar multiplication on the fibers of \(T^*Q\), \begin{align*}\phi^t: T^*Q\to T^*Q && (q, p) \mapsto (q, tp)\end{align*} which inflates the symplectic form. Now equip \(Q\) with a metric \(g\). The metric determines a unit sphere bundle \(S^*Q\subset T^*Q\), which is transverse to \(V\). Letting \(\alpha=\lambda|_{S^*Q}\) makes \((S^*Q, \alpha)\) a contact manifold. The time \(t\)-flow on \((S^*Q, \alpha)\) corresponds to the time \(t\) geodesic flow on the base ((geodesics and symplectic cohohomology of the cotangent bundle)). It is known ([Fet52]) that every closed manifold has at least 1 closed geodesic, so all of these examples of contact manifolds have a Reeb orbit.References
[Fet52] | Abram Il'ich Fet. Variational problems on closed manifolds. Matematicheskii Sbornik, 72(2):271--316, 1952. |