\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

example 0.0.1

We return to (contact hypersurfaces) of the Reeb vector field on \((S^{n-1},\alpha)\), where \(S^{n-1}\) is considered as a hypersurface of \(\CC^n\). Recall we have a map \(p:S^{2n-1}\to N\), where \(N\subset \RR_{\geq 0}^n\) is the simplex defined by \(\sum_{i=1}^n p_i^2=1\). The fibers of \(p\) are \(n\)-dimensional tori in \(S^{2n-1}\) which are parallel to the Reeb vector field \(V_\alpha\). In fact, Reeb vector field \(V_\alpha\) acts on the fibers \(p^{-1}(p_1, \ldots, p_n)\) by translation in the \((\sqrt p_1, \ldots, \sqrt p_n)\) direction. We therefore identify two types of fibers of \(p\): The Reeb orbits of \((S^{n-1}, \alpha)\) are in bijection with \(\bigoplus_{\vec v\in \NN^n\setminus \{0\}} T^n/\vec v\).