\( \def\CC{{\mathbb C}} \def\RR{{\mathbb R}} \def\NN{{\mathbb N}} \def\ZZ{{\mathbb Z}} \def\TT{{\mathbb T}} \def\CF{{\operatorname{CF}^\bullet}} \def\HF{{\operatorname{HF}^\bullet}} \def\SH{{\operatorname{SH}^\bullet}} \def\ot{{\leftarrow}} \def\st{\;:\;} \def\Fuk{{\operatorname{Fuk}}} \def\emprod{m} \def\cone{\operatorname{Cone}} \def\Flux{\operatorname{Flux}} \def\li{i} \def\ev{\operatorname{ev}} \def\id{\operatorname{id}} \def\grad{\operatorname{grad}} \def\ind{\operatorname{ind}} \def\weight{\operatorname{wt}} \def\Sym{\operatorname{Sym}} \def\HeF{\widehat{CHF}^\bullet} \def\HHeF{\widehat{HHF}^\bullet} \def\Spinc{\operatorname{Spin}^c} \def\min{\operatorname{min}} \def\div{\operatorname{div}} \def\SH{{\operatorname{SH}^\bullet}} \def\CF{{\operatorname{CF}^\bullet}} \def\Tw{{\operatorname{Tw}}} \def\Log{{\operatorname{Log}}} \def\TropB{{\operatorname{TropB}}} \def\wt{{\operatorname{wt}}} \def\Span{{\operatorname{span}}} \def\Crit{\operatorname{Crit}} \def\CritVal{\operatorname{CritVal}} \def\FS{\operatorname{FS}} \def\Sing{\operatorname{Sing}} \def\Coh{\operatorname{Coh}} \def\Vect{\operatorname{Vect}} \def\into{\hookrightarrow} \def\tensor{\otimes} \def\CP{\mathbb{CP}} \def\eps{\varepsilon} \) SympSnip:

example 0.0.1

We return to (contact hypersurfaces) of hypersurfaces in \(\RR^{2n}\) given by \(M=p^{-1}(N)\). Consider the hypersurface \(N\) defined by the equation \(p_1+\cdots p_n=1\). Then \(M=S^{2n-1}\subset \RR^n\). We give \(\CC^n\) the polar coordinates \((r_i, \theta_i)\). Let \(f=\sum_{i=1}^n |z_i|^2.\) The tangent space to \(M\) is the orthogonal complement to \(\grad(f).\) Consider the vector field \[V:=\sum_{i=1}^n x_i \partial_{y_i}- y_i \partial_{x_i}.\] First, observe that \[V\cdot \grad(f)=\sum_{i=1}^n( x_i y_i - y_i x_i )= 0 \] so \(V\) restricts to a vector field on \(M\). Let \(v=\sum_{i}a_i \partial_{x_i}+b_i\partial_{y_i}\) be any vector in \(TM\). Then the pairing \begin{align*} \omega(v, V)=&\sum_{i=1}^n a_ix_i+b_iy_i\\ =&v\cdot \grad(f)=0 \end{align*} From this, we conclude that \(V\in \ker(d\alpha)\). Finally, we have that \(\alpha=\iota_Z\omega\), so \[\omega(Z, V)=\sum_{i=1}^n (x^2+y^2)=1\] From which we conclude that \(V\) is the Reeb vector field for \((M, \alpha)\).